14 research outputs found

    Early mobilisation in critically ill COVID-19 patients: a subanalysis of the ESICM-initiated UNITE-COVID observational study

    Get PDF
    Background Early mobilisation (EM) is an intervention that may improve the outcome of critically ill patients. There is limited data on EM in COVID-19 patients and its use during the first pandemic wave. Methods This is a pre-planned subanalysis of the ESICM UNITE-COVID, an international multicenter observational study involving critically ill COVID-19 patients in the ICU between February 15th and May 15th, 2020. We analysed variables associated with the initiation of EM (within 72 h of ICU admission) and explored the impact of EM on mortality, ICU and hospital length of stay, as well as discharge location. Statistical analyses were done using (generalised) linear mixed-effect models and ANOVAs. Results Mobilisation data from 4190 patients from 280 ICUs in 45 countries were analysed. 1114 (26.6%) of these patients received mobilisation within 72 h after ICU admission; 3076 (73.4%) did not. In our analysis of factors associated with EM, mechanical ventilation at admission (OR 0.29; 95% CI 0.25, 0.35; p = 0.001), higher age (OR 0.99; 95% CI 0.98, 1.00; p ≤ 0.001), pre-existing asthma (OR 0.84; 95% CI 0.73, 0.98; p = 0.028), and pre-existing kidney disease (OR 0.84; 95% CI 0.71, 0.99; p = 0.036) were negatively associated with the initiation of EM. EM was associated with a higher chance of being discharged home (OR 1.31; 95% CI 1.08, 1.58; p = 0.007) but was not associated with length of stay in ICU (adj. difference 0.91 days; 95% CI − 0.47, 1.37, p = 0.34) and hospital (adj. difference 1.4 days; 95% CI − 0.62, 2.35, p = 0.24) or mortality (OR 0.88; 95% CI 0.7, 1.09, p = 0.24) when adjusted for covariates. Conclusions Our findings demonstrate that a quarter of COVID-19 patients received EM. There was no association found between EM in COVID-19 patients' ICU and hospital length of stay or mortality. However, EM in COVID-19 patients was associated with increased odds of being discharged home rather than to a care facility. Trial registration ClinicalTrials.gov: NCT04836065 (retrospectively registered April 8th 2021)

    Síndrome hemolítico-urémico y Streptococo pneumoniae: Report of one case

    No full text

    Hemodynamic and Pulmonary Permeability Characterization of Hantavirus Cardiopulmonary Syndrome by Transpulmonary Thermodilution

    No full text
    Hantavirus cardiopulmonary syndrome (HCPS) is characterized by capillary leak, pulmonary edema (PE), and shock, which leads to death in up to 40% of patients. Treatment is supportive, including mechanical ventilation (MV) and extracorporeal membrane oxygenation (ECMO). Hemodynamic monitoring is critical to titrate therapy and to decide ECMO support. Transpulmonary thermodilution (TPTD) provides hemodynamic and PE data that have not been systematically used to understand HCPS pathophysiology. We identified 11 HCPS patients monitored with TPTD: eight on MV, three required ECMO. We analyzed 133 measurements to describe the hemodynamic pattern and its association with PE. The main findings were reduced stroke volume, global ejection fraction (GEF), and preload parameters associated with increased extravascular lung water and pulmonary vascular permeability compatible with hypovolemia, myocardial dysfunction, and increased permeability PE. Lung water correlated positively with heart rate (HR, r = 0.20) and negatively with mean arterial pressure (r = −0.27) and GEF (r = −0.36), suggesting that PE is linked to hemodynamic impairment. Pulmonary vascular permeability correlated positively with HR (r = 0.31) and negatively with cardiac index (r = −0.49), end-diastolic volume (r = −0.48), and GEF (r = −0.40), suggesting that capillary leak contributes to hypovolemia and systolic dysfunction. In conclusion, TPTD data suggest that in HCPS patients, increased permeability leads to PE, hypovolemia, and circulatory impairment

    Platelet Count in Patients with Mild Disease at Admission is Associated with Progression to Severe Hantavirus Cardiopulmonary Syndrome

    No full text
    Background: Hantavirus cardiopulmonary syndrome (HCPS) has a mortality up to 35–40% and its treatment is mainly supportive. A variable to predict progression from mild to severe disease is unavailable. This study was performed in patients with documented infection by Andes orthohantavirus, and the aim was to find a simple variable to predict progression to moderate/severe HCPS in patients with mild disease at admission. Methods: We performed a retrospective analysis of 175 patients between 2001 and 2018. Patients were categorized into mild, moderate, and severe disease according to organ failure and advanced support need at hospital admission (e.g., mechanical ventilation, vasopressors). Progression to moderate/severe disease was defined accordingly. Clinical and laboratory variables associated with progression were explored. Results: Forty patients with mild disease were identified; 14 of them progressed to moderate/severe disease. Only platelet count was different between those who progressed versus those that did not (37 (34–58) vs. 83 (64–177) K/mm3, p < 0.001). A ROC curve analysis showed an AUC = 0.889 (0.78–1.0) p < 0.001, with a platelet count greater than 115K /mm3 ruling out progression to moderate/severe disease. Conclusions: In patients with mild disease at presentation, platelet count could help to define priority of evacuation to tertiary care centers

    An appraisal of respiratory system compliance in mechanically ventilated covid-19 patients

    No full text
    BackgroundHeterogeneous respiratory system static compliance (CRS) values and levels of hypoxemia in patients with novel coronavirus disease (COVID-19) requiring mechanical ventilation have been reported in previous small-case series or studies conducted at a national level.MethodsWe designed a retrospective observational cohort study with rapid data gathering from the international COVID-19 Critical Care Consortium study to comprehensively describe CRS—calculated as: tidal volume/[airway plateau pressure-positive end-expiratory pressure (PEEP)]—and its association with ventilatory management and outcomes of COVID-19 patients on mechanical ventilation (MV), admitted to intensive care units (ICU) worldwide.ResultsWe studied 745 patients from 22 countries, who required admission to the ICU and MV from January 14 to December 31, 2020, and presented at least one value of CRS within the first seven days of MV. Median (IQR) age was 62 (52–71), patients were predominantly males (68%) and from Europe/North and South America (88%). CRS, within 48 h from endotracheal intubation, was available in 649 patients and was neither associated with the duration from onset of symptoms to commencement of MV (p = 0.417) nor with PaO2/FiO2 (p = 0.100). Females presented lower CRS than males (95% CI of CRS difference between females-males: − 11.8 to − 7.4 mL/cmH2O p RS was marginal (p = 0.139). Ventilatory management varied across CRS range, resulting in a significant association between CRS and driving pressure (estimated decrease − 0.31 cmH2O/L per mL/cmH20 of CRS, 95% CI − 0.48 to − 0.14, p RS (+ 10 mL/cm H2O) was only associated with being discharge from the ICU within 28 days (HR 1.14, 95% CI 1.02–1.28, p = 0.018).ConclusionsThis multicentre report provides a comprehensive account of CRS in COVID-19 patients on MV. CRS measured within 48 h from commencement of MV has marginal predictive value for 28-day mortality, but was associated with being discharged from ICU within the same period. Trial documentation: Available at https://www.covid-critical.com/study.Trial registration: ACTRN12620000421932

    Early short course of neuromuscular blocking agents in patients with COVID-19 ARDS : a propensity score analysis

    No full text
    Background: The role of neuromuscular blocking agents (NMBAs) in coronavirus disease 2019 (COVID-19) acute respiratory distress syndrome (ARDS) is not fully elucidated. Therefore, we aimed to investigate in COVID-19 patients with moderate-to-severe ARDS the impact of early use of NMBAs on 90-day mortality, through propensity score (PS) matching analysis. Methods: We analyzed a convenience sample of patients with COVID-19 and moderate-to-severe ARDS, admitted to 244 intensive care units within the COVID-19 Critical Care Consortium, from February 1, 2020, through October 31, 2021. Patients undergoing at least 2 days and up to 3 consecutive days of NMBAs (NMBA treatment), within 48 h from commencement of IMV were compared with subjects who did not receive NMBAs or only upon commencement of IMV (control). The primary objective in the PS-matched cohort was comparison between groups in 90-day in-hospital mortality, assessed through Cox proportional hazard modeling. Secondary objectives were comparisons in the numbers of ventilator-free days (VFD) between day 1 and day 28 and between day 1 and 90 through competing risk regression. Results: Data from 1953 patients were included. After propensity score matching, 210 cases from each group were well matched. In the PS-matched cohort, mean (± SD) age was 60.3 ± 13.2 years and 296 (70.5%) were male and the most common comorbidities were hypertension (56.9%), obesity (41.1%), and diabetes (30.0%). The unadjusted hazard ratio (HR) for death at 90 days in the NMBA treatment vs control group was 1.12 (95% CI 0.79, 1.59, p = 0.534). After adjustment for smoking habit and critical therapeutic covariates, the HR was 1.07 (95% CI 0.72, 1.61, p = 0.729). At 28 days, VFD were 16 (IQR 0–25) and 25 (IQR 7–26) in the NMBA treatment and control groups, respectively (sub-hazard ratio 0.82, 95% CI 0.67, 1.00, p = 0.055). At 90 days, VFD were 77 (IQR 0–87) and 87 (IQR 0–88) (sub-hazard ratio 0.86 (95% CI 0.69, 1.07; p = 0.177). Conclusions: In patients with COVID-19 and moderate-to-severe ARDS, short course of NMBA treatment, applied early, did not significantly improve 90-day mortality and VFD. In the absence of definitive data from clinical trials, NMBAs should be indicated cautiously in this setting.</p

    Co-infection and ICU-acquired infection in COIVD-19 ICU patients: a secondary analysis of the UNITE-COVID data set

    No full text
    Background: The COVID-19 pandemic presented major challenges for critical care facilities worldwide. Infections which develop alongside or subsequent to viral pneumonitis are a challenge under sporadic and pandemic conditions; however, data have suggested that patterns of these differ between COVID-19 and other viral pneumonitides. This secondary analysis aimed to explore patterns of co-infection and intensive care unit-acquired infections (ICU-AI) and the relationship to use of corticosteroids in a large, international cohort of critically ill COVID-19 patients.Methods: This is a multicenter, international, observational study, including adult patients with PCR-confirmed COVID-19 diagnosis admitted to ICUs at the peak of wave one of COVID-19 (February 15th to May 15th, 2020). Data collected included investigator-assessed co-infection at ICU admission, infection acquired in ICU, infection with multi-drug resistant organisms (MDRO) and antibiotic use. Frequencies were compared by Pearson's Chi-squared and continuous variables by Mann-Whitney U test. Propensity score matching for variables associated with ICU-acquired infection was undertaken using R library MatchIT using the "full" matching method.Results: Data were available from 4994 patients. Bacterial co-infection at admission was detected in 716 patients (14%), whilst 85% of patients received antibiotics at that stage. ICU-AI developed in 2715 (54%). The most common ICU-AI was bacterial pneumonia (44% of infections), whilst 9% of patients developed fungal pneumonia; 25% of infections involved MDRO. Patients developing infections in ICU had greater antimicrobial exposure than those without such infections. Incident density (ICU-AI per 1000 ICU days) was in considerable excess of reports from pre-pandemic surveillance. Corticosteroid use was heterogenous between ICUs. In univariate analysis, 58% of patients receiving corticosteroids and 43% of those not receiving steroids developed ICU-AI. Adjusting for potential confounders in the propensity-matched cohort, 71% of patients receiving corticosteroids developed ICU-AI vs 52% of those not receiving corticosteroids. Duration of corticosteroid therapy was also associated with development of ICU-AI and infection with an MDRO.Conclusions: In patients with severe COVID-19 in the first wave, co-infection at admission to ICU was relatively rare but antibiotic use was in substantial excess to that indication. ICU-AI were common and were significantly associated with use of corticosteroids
    corecore