1,940 research outputs found

    Monte Carlo Study of the Inflation-Deflation Transition in a Fluid Membrane

    Full text link
    We study the conformation and scaling properties of a self-avoiding fluid membrane, subject to an osmotic pressure pp, by means of Monte Carlo simulations. Using finite size scaling methods in combination with a histogram reweighting techniques we find that the surface undergoes an abrupt conformational transition at a critical pressure pp^\ast, from low pressure deflated configurations with a branched polymer characteristics to a high pressure inflated phase, in agreement with previous findings \cite{gompper,baum}. The transition pressure pp^{\ast} scales with the system size as pNαp^\ast \propto N^{-\alpha}, with α=0.69±0.01\alpha = 0.69 \pm 0.01. Below pp^\ast the enclosed volume scales as VNV \propto N, in accordance with the self-avoiding branched polymer structure, and for ppp\searrow p^{\ast} our data are consistent with the finite size scaling form VNβ+V \propto N^{\beta_{+}}, where β+=1.43±0.04\beta_{+} = 1.43 \pm 0.04. Also the finite size scaling behavior of the radii of gyration and the compressibility moduli are obtained. Some of the observed exponents and the mechanism behind the conformational collapse are interpreted in terms of a Flory theory.Comment: 20 pages + postscript-file, Latex + Postscript, IFA Report No. 94/1

    A detector for continuous measurement of ultra-cold atoms in real time

    Full text link
    We present the first detector capable of recording high-bandwidth real time atom number density measurements of a Bose Einstein condensate. Based on a two-color Mach-Zehnder interferometer, our detector has a response time that is six orders of magnitude faster than current detectors based on CCD cameras while still operating at the shot-noise limit. With this minimally destructive system it may be possible to implement feedback to stabilize a Bose-Einstein condensate or an atom laser.Comment: 3 pages, 3 figures, submitted to optics letter

    Optical waveform sampling of a 320 Gbits/s serial data signal using a hydrogenated amorphous silicon waveguide

    Get PDF
    We propose using a hydrogenated amorphous silicon waveguide for ultra-high-speed serial data waveform sampling. 320 Gbit/s serial optical data sampling is experimentally demonstrated with +12 dB intrinsic four wave mixing conversion efficiency

    Proposal for 1977-78

    Get PDF

    Advancing projections of phytoplankton responses to climate change through ensemble modelling

    Get PDF
    A global trend of increasing health hazards associated with proliferation of toxin-producing cyanobacteria makes the ability to project phytoplankton dynamics of paramount importance. Whilst ensemble (multi-)modelling approaches have been used for a number of years to improve the robustness of weather forecasts this approach has until now never been adopted for ecosystem modelling. We show that the average simulated phytoplankton biomass derived from three different aquatic ecosystem models is generally superior to any of the three individual models in describing observed phytoplankton biomass in a typical temperate lake ecosystem, and we simulate a series of climate change projections. While this is the first multi-model ensemble approach applied for some of the most complex aquatic ecosystem models available, we consider it sets a precedent for what will become commonplace methodology in the future, as it enables increased robustness of model projections, and scenario uncertainty estimation due to differences in model structures

    Optical switching and detection of 640 Gbits/s optical time-division multiplexed data packets transmitted over 50 km of fiber

    Get PDF
    We demonstrate 1×4 optical-packet switching with error-free transmission of 640¿Gbits/s single-wavelength optical time-division multiplexed data packets including clock distribution and short pulse generation for optical time demultiplexing based on a cavityless pulse source
    corecore