153 research outputs found
Force-induced acoustic phonon transport across single-digit nanometre vacuum gaps
Heat transfer between bodies separated by nanoscale vacuum gap distances has
been extensively studied for potential applications in thermal management,
energy conversion and data storage. For vacuum gap distances down to 20 nm,
state-of-the-art experiments demonstrated that heat transport is mediated by
near-field thermal radiation, which can exceed Planck's blackbody limit due to
the tunneling of evanescent electromagnetic waves. However, at sub-10-nm vacuum
gap distances, current measurements are in disagreement on the mechanisms
driving thermal transport. While it has been hypothesized that acoustic phonon
transport across single-digit nanometre vacuum gaps (or acoustic phonon
tunneling) can dominate heat transfer, the underlying physics of this
phenomenon and its experimental demonstration are still unexplored. Here, we
use a custom-built high-vacuum shear force microscope (HV-SFM) to measure heat
transfer between a silicon (Si) tip and a feedback-controlled platinum (Pt)
nanoheater in the near-contact, asperity-contact, and bulk-contact regimes. We
demonstrate that in the near-contact regime (i.e., single-digit nanometre or
smaller vacuum gaps before making asperity contact), heat transfer between Si
and Pt surfaces is dominated by force-induced acoustic phonon transport that
exceeds near-field thermal radiation predictions by up to three orders of
magnitude. The measured thermal conductance shows a gap dependence of
in the near-contact regime, which is consistent with acoustic
phonon transport modelling based on the atomistic Green's function (AGF)
framework. Our work suggests the possibility of engineering heat transfer
across single-digit nanometre vacuum gaps with external force stimuli, which
can make transformative impacts to the development of emerging thermal
management technologies.Comment: 9 pages with 4 figures (Main text), 13 pages with 7 figures
(Methods), and 13 pages with 6 figures and 1 table (Supplementary
Information
Separable states to distribute entanglement
It was shown that two distant particles can be entangled by sending a third
particle never entangled with the other two [T. S. Cubitt et al., Phys. Rev.
Lett. 91, 037902 (2003)]. In this paper, we investigate a class of three-qubit
separable states to distribute entanglement by the same way, and calculate the
maximal amount of entanglement which two particles of separable states in the
class can have after applying the way.Comment: 4 pages, no figures, Revised argumen
A Novel Approach to Synthesize Helix Wave Hollow Fiber Membranes for Separation Applications
Helix wave hollow fiber membranes are promising candidate to mitigate fouling and polarization effects in membrane operations. Current study describes a novel but simple approach to synthesize hollow fiber membranes with helix wave configuration. Poly(ether sulfone) (PES) based helix-waved hollow fiber membranes have been fabricated by dry-wet phase inversion process by using asymmetric coagulation conditions. Frequencies of the wave cycle have been observed approximately 20 and the wave length 7.1-7.6mm under the specifically required operating conditions defined by dope solution extrudate rate of 1g/min through 4cm of air-gap heights with 8.6m/min of winding speeds. On the other hand, simple hollow fibers are formed when the elongation force exerted by the winder is much higher than the surface tension of the external coagulant. The process can be useful for making polymer fibers for other applications as well
- …