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Abstract

In this article, we propose a novel loss recovery algorithm of transmission control protocol (TCP) using packet
transmission order, which shows a steady loss recovery ability even though packet loss rate increases. This leads to
a significant throughput increase of TCP with heavy packet loss. We have verified the performance increase of the
new TCP under various environments such as a wireless network, and multimedia transmission through simulation.
Moreover, we implemented the proposed idea in Linux and conducted some experiments in a real environment.
Even though the experiment results did not perfectly agree with the simulation results, we obtained a similar
throughput increase to that of the simulation.
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1 Introduction
The transmission control protocol (TCP) has been very
successfully used within the Internet, and it is being
implemented and used in various operating systems
such as Windows, Linux, and Mac OS. The congestion
control and loss recovery algorithm of this protocol
have been improved over the last two decades. In the
late 1980s, Tahoe and Reno developed the first genera-
tion of TCPs with new congestion control features to
address losses more efficiently [1,2].
However, the limitations with bursty losses led to the

development of SACK and FACK protocol, which adopt
a selective ACK rather than a cumulative ACK scheme
[3,4].
As wireless networks became more popular, the use of

a wireless lossy channel presents new issues to TCP
engineers. Considerable efforts have been made to
improve TCP efficiency over wireless channels [5-7].
Some researchers attempted to modify congestion con-
trol in order to retain the congestion window during
wireless loss [8-10]. Others have differentiated conges-
tion losses and wireless channel losses [11-13]. However,
the results of these studies were not very promising
because the developed methods require help from other

network elements such as base stations or routers, and
the proposed differentiation algorithms did not perform
well. Other TCP variants such as TCP-RR [14], TCP-PR
[15], and TCP-DCR [16] address the issue of packet
reordering or persistent congestion.
Even with numerous proposals, limited attention has

been paid to the loss recovery algorithm or architecture
of TCP. Most work has focused on congestion control
rather than loss recovery. Even SACK or FACK imple-
mentations, though they enhance loss recovery, maintain
the single linked list architecture. We previously pro-
posed a new TCP architecture based on two lists in
order to improve the TCP loss performance [17,18]. We
implemented the new idea in a linux setting and per-
formed an evaluation of the method.
We verified the following statements through this

article.
- The loss recovery ability of the current loss recovery

algorithms varies with the number of packet losses in a
window, leading to frequent RTO expiration and lower
throughput. We show the weaknesses of the loss recov-
ery algorithms in detail with the simulation results.
- The proposed new loss recovery algorithm consis-

tently recovers lost packets at a higher packet loss rate.
We also explained the reason to use packet transmission
order to address the aforementioned problem of the
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- We implemented the proposed idea in a Linux and
tested the implemented code in a real environment.
Even though the experiment results did not perfectly
agree with the simulation results, we obtained a similar
throughput to that of the simulation.
- From the real experiment, we found that the conges-

tion controls of wireless TCP did not function as pro-
posed. However, even though wireless TCP shows poor
throughput, a strong loss recovery algorithm can
increase the performance of wireless TCP.
The rest of of article is organized as follows. Section 2

proposes new loss recovery architecture and algorithm
for wireless TCP. It analyzes the limitations of current
loss recovery algorithms and shows why packet trans-
mission order should be used to improve the loss recov-
ery ability. Section 3 validates the proposed idea with
various simulation results. Section 4 describes the Linux
implementation of the proposed idea and Section 5
shows experiment results. Section 6 finalizes this paper
with conclusions and future research direction.

2 New architecture and loss recovery algorithm
Though the architecture and the algorithm were pre-
sented in our conference papers [17,18], we summarize
them here for completeness. We named our proposal
LE, an abbreviation of Loss rEsilience. The main design
goal of LE is to achieve loss recovery ability resilient to
ACK starvation. To realize the goal, TCP needs to main-
tain the correct number of pending packets in networks
even during loss recovery.

2.1 Two lists structure
We propose a new loss recovery algorithm based on a
new data structure–two packet transmission order lists.
The important difference between our proposal and the
existing algorithms is the basic data structure. The data
structure of the previous algorithms is sequential num-
ber based packet list which has difficulty remembering
packet transmission order. However, our proposal is
able to reflect the packet transmission order.
As shown in Figure 1b, LE manages two lists, WAIT-

LIST and RTXLIST. When a packet is newly sent or
resent, it is inserted at the end of WAITLIST to record
the transmission order. Therefore, the list naturally
represents all of the currently outstanding packets.
When a packet is determined to be lost, the packet is
transferred to the end of RTXLIST. Each entry in the
lists contains three variables dupCnt, timeStamp, and
seqNum.

2.2 New loss recovery algorithms
2.2.1 Per packet acking process
Whenever an ACK, including time stamp and SACK
options, arrives, the timeStamp in the packet is compared

to the time stamp of the ACK. If the timeStamp is less
than the time stamp of the ACK and the seqNum is less
than or equal to the cumulative number of the ACK, the
packet is acked. If the timeStamp is equal to the time
stamp of the ACK, SACK blocks are used for acking the
packet. If the packet is not acked, the dupCnt increases
by one. If dupCnt reaches the dupThresh (usually 3), the
packet is considered as a loss and is moved to the end of
RTXLIST for retransmission. If the timeStamp is larger
than the time stamp of the ACK, scanning WAITLIST
stops. Figure 2 depicts an example of this situation.
2.2.2 Retransmission-first packet transmission
LE can transmit a new packet or lost packet if the num-
ber of on-flying packets is less than cwnd. As the num-
ber of on-flying packets is the same as the number of
packets in WAITLIST, if the number is less than cwnd,
LE transmits packets. If RTXLIST is not empty, LE
gives priority to RTXLIST and sends the packets first.
New packets can be sent only when RTXLIST is empty
and when the transmission condition is still valid. After
the timeStamp is updated and the dupCnt is set to zero,
the packet is removed from RTXLIST and inserted at
the end of WAITLIST.
2.2.3 Per RTT congestion window reduction
LE has no discrete states between the loss recovery per-
iod and the normal period. To prevent LE from too fre-
quently reducing cwnd, LE introduces the variable
las_loss_time. When the first lost packet is detected, the
lost time is recorded in this variable. Whenever a packet
loss occurs, LE checks if the difference between the cur-
rent time and the last_loss_time is greater than an RTT.
If so, LE updates the last_loss_time with the current
time and uses the congestion control routine. Otherwise,
LE ignores the packet loss since LE treats multiple
packet losses in an RTT as a single loss event, as does
NewReno.

Figure 1 Comparison between old and new architecture.
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2.2.4 Fine grain RTT and RTO timer setting
LE calculates RTT when the time stamp of an ACK
that acknowledges a packet which matches with the
timeStamp of the packet because the ack was gener-
ated due to the packet. The RTO timer is set when
there are no on-flying packets and when a new packet
is sent. When the last_acked variable, which stores the
last cumulative sequence number, is advanced, the
RTO timer is reset. When the last_acked cannot be
advanced at the RTO timeout value, RTO expiry will
occur.
Observation: Assume that n packets are lost. As long as

LE receives at least three duplicate ACKs, all lost packets
can be recovered without RTO expiry.
Proof. Let us assume that n packets are lost in the

last RTT period. Then, LE receives duplicate ACKs
due to the loss. When LE receives the first two dupli-
cate ACKs, since the number of on-flying packets is
reduced by two, LE can transmit at least two new
packets. Receiving the third duplicate ACK, LE sets the
dupCnt of the first lost packet to 3 and moves the
packet into RTXLIST. According to the retransmission
first strategy, LE retransmits the head of RTXLIST and

simultaneously sets the value of cwnd to
w0

2
, where w0

is the size of cwnd before detecting the first packet
loss. In the next RTT, when LE receives ACKs due to
two new sent packets and one retransmitted packet,
the dupCnt of all lost packets will be three and they
will all be moved to RTXLIST, which results in WAIT-
LIST to be empty. Therefore, LE can send as many
packets as cwnd. Therefore, in the next RTT period,
LE receives at least three ACKs and does not invoke
RTO expiry.

2.3 Contributions of LE
2.3.1 Extending the self clocking property by resolving ACK
starvation during loss recovery
By retaining the acket transmission order, LE measures
the exact number of lost packets upon a single duplicate
ACK, making it possible to strictly extend the self clock-
ing property. In other words, LE transmits the number
of packets equal to that exiting networks even during
loss recovery. Therefore, even when there are not
enough duplicate ACKs to transmit lost packets during
loss recovery, LE does not incur RTO expiry and suc-
cessfully recovers lost packets.
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Dup. 
count

(a) Packets 16, 17, and 18 are lost

(b) ACK due to packets 19, 
20, and 21 increase the dup.
count of packets 16, 17, and 
18 up to 3. These 3 packets 
are detected as lost packets.
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(c) As an ACK arrives and transmission condition is 
satisfied, the packets in RTXLIST are sent first.

Figure 2 An example of LE’s acking process when combined with AIMD.
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2.3.2 Simple code by decoupling loss recovery and
congestion control
An advantage of the separate RTXLIST is the decou-
pling transmission decision from the loss recovery. Note
that in our architecture, loss recovery is not affected by
transmission of lost packets, and its role ends after mov-
ing packets to RTXLIST. The transmission is handled by
congestion control. Nor does the transmitter depend on
whether the packet is new or a retransmitted one except
that it gives priority to those in RTXLIST. This decou-
pling simplifies the source code.
2.3.3 Simple and efficient loss recovery
SACK and FACK cannot recover the loss of retrans-
mitted packets until timer-expiration. The proposed
method can handle heavy losses including loss of
retransmitted packets by keeping the transmission order
information in WAITLIST, a natural extension of [19].
Existing loss recovery algorithms limit the scope of
packets for recovery to those that have a sequence num-
ber between lastAcked and lastSent. After recovering
the packets up to lastSent, SACK returns to normal
phase. Therefore, when packets after lastSent are lost,
SACK reenters the loss recovery phase. Considering the
cost of each transition, freezing the transmission for the
third duplicate ACKs, and re-initializing the scoreboard
data structure, scope limitation can cause inefficiency.
By not limiting the scope, our method can be consid-
ered as a constant loss recovery mechanism.
2.3.4 Resilience to packet reordering
Transmission control protocol considers acket reorder-
ing as a sign of congestion and controls its window size.
Ideas such as variable dup count or non-use of duplicate
ACK have been proposed [14]. Even though we did not
propose a solution to the reordering problem, due to
our enhanced architecture we believe it is more resilient
to this problem. Moreover, techniques such as variable
duplicate ACKs can be combined with our proposal.

3 Performance evaluation
In this section, we discuss performance of our loss
recovery proposal in the view of loss recovery ability,
loss recovery effect on wireless TCP, and multimedia
transmission. To analyze the loss recovery ability and
effects on various TCPs, and multimedia transmission,
we conducted extensive NS-2 [20] simulations to inspect
the effects of loss recovery in various scenarios. For the
simulation, the dumbbell topology shown in Figure 3
was used and the size of the TCP packet was set to 1
kb, and the default simulation time was 100s if not
mentioned otherwise.

3.1 Loss recovery ability
To evaluate the loss recovery ability of LE, we compare
it with various TCP implementations. The loss recovery

duration, the time between the first loss and full packet
recovery, was used as the performance metric. Figure 4
shows the results of different TCP implementations.
The x-axis corresponds to the number of lost packets in
an RTT, while the y-axis corresponds to the recovery
duration. We randomly choose a certain number of
packets among all outstanding packets, dropped them
into the bottleneck links and measured the duration.
Each point in the plots is the average value of ten differ-
ent runs. We assumed that a retransmitted packet is not
lost again. If we allow loss of retransmitted packet, the
conventional TCPs except LE will eventually fall into
RTO expiry irrespective of the number of lost packet
[19]. Through the assumption, we need to exclude the
RTO expiry due to repeated lost of retransmitted packet
because the purpose of the simulation is to measure
how fast each TCP will successfully recover all the lost
packets as the number of lost packet increases. We lim-
ited the maximum cwnd to 32 for ease of simulation in
order to differentiate each packet train in the bottleneck
link.
3.1.1 Overall loss recovery performance is in the order of
LE, FACK, SACK, NewReno and Reno
As shown in Figure 4, the duration of NewReno is lower
than that of Reno, which is partly due to the fact that
NewReno has a superior counting mechanism. SACK
outperforms NewReno for up to 18 lost packets. SACK

Figure 3 Basic simulation topology: dumbbell shape.
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recovers the lost packets up to eight lost packets(
cwnd
4

)
in a single RTT. If the number of losses is

greater than 18
(
cwnd
2

+ 2
)
, SACK suffers from RTO

expiry, as shown in Figure 4. Observe that the perfor-
mance of SACK becomes worse than that of NewReno
if the number of losses is greater than 18. Even though
NewReno experiences RTO expiry at the same time as
does SACK, the retransmission ambiguity problem [21]
allows NewReno to possess a shorter recovery time than
that of SACK.a FACK exhibited single RTT recovery up
to 15 lost packets. From that point on, the loss recovery
duration increased exponentially. The recovery duration
of LE was almost linear up to 29 of 32 losses, which
confirming a superior loss recovery ability than those of
other variations.

3.2 Fairness of LE
The goal of this simulation was to measure LE’s fairness
with SACK. We choose FACK’s fairness as a baseline.
First, we ran a total of ten flows combining SACK and
FACK. The number i of SACK flows was variably set to
1, 3, 5, 7, 9. The number of FACK flows was set to be
10 - i. LE was also tested under the same condition. We
assume that packet loss rate is 0% in this simulation.
3.2.1 LE shares fair bandwidth with SACK
Figure 5b shows LE’s fairness with regard to that of
SACK. Comparing Figure 5b with Figure 5a, represent-
ing FACK’s fairness with SACK, shows that the fairness
of LE is comparable to that of SACK. This was verified
from the fact that LE showed the same throughput
curve as those of the other methods at the same packet
loss rate, as shown in Figure 6a. Because the effect of
removal of RTO expiry was amortized during the ses-
sion, LE is not considered to be an aggressive method.

3.3 LE with different congestion control algorithms
We compared the impacts of the loss recovery algo-
rithms with the congestion control algorithms, additive

increase multiplicative decrease (AIMD), fixed window,
and that of Westwood. Congestion control referred to
the way cwnd was set by TCP. In the case of AIMD, tra-
ditional Reno type congestion window control was used.
Fixed window control does not change its window size;
this algorithm was introduced to determine the impact
of loss recovery in the absence of the congestion control
algorithm. The Westwood congestion control utilizes
available bandwidth information for setting cwnd values.
We compared five different loss recovery algorithms:
Reno, newReno, SACK, FACK and LE. The loss recovery
of Reno and that of newReno are similar, but newReno
improves retransmission during the fast recovery phase.
SACK is an improvement over Reno and newReno due
to utilizing of the selective ACK option. FACK aims to
trigger faster retransmission by utilizing additional vari-
ables compared to those of SACK.
Figure 6 shows the throughputs of 15 congestion con-

trol and loss recovery combinations. The x-axes in all
graphs correspond to packet loss rate, the duration of
each simulation run was 100s, and ten runs were aver-
aged for each point in the graph. We generated single
ftp flow between a sender and a receiver in (a)-(c) while
there are ten simultaneous ftp flows in (d).
3.3.1 LE with AIMD congestion control
LE under AIMD exhibits the same throughput curve as
do the other loss recovery algorithms. We replaced the
loss recovery part of TCP-Reno with our algorithm. To
our surprise, when typical AIMD control of TCP was
used, the throughputs of different TCP implementations
were very similar. LE performed slightly better, but the
impact was marginal, as shown in [[22], Figure 6a].
The number of losses in a single window was typically

less than one or two packets in most cases, the reason
why the advanced loss recovery of LE was not very help-
ful in this case. When the loss rate was low, the number
of lost packet was typically one, when the loss rate was
high, the average cwnd was very low, for example, 4.
Even with a 10% loss rate, as the average window size
was small, the number of lost packets in a single RTT
was small.
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3.3.2 LE with fixed window
The gain of LE increases as cwnd becomes larger. To
remove the impact of congestion control on loss recov-
ery, the congestion window was set to 32 packets and
the test was repeated. The results of this simulation are
shown in Figure 6b. The throughput of LE was superior
to those of other loss recovery algorithms, demonstrat-
ing the effectiveness of LE’s loss recovery algorithm.
The throughputs of Reno, newReno, SACK, and FACK
were inferior to that of LE because they frequently
experience RTO expiry, during which they cannot send
packets. As LE can quickly detect the loss of retrans-
mitted packets or tolerate insufficient duplicate ACKs,
LE does not experience RTO expiry and therefore saves
time, maintaining the transmission rate.
3.3.3 LE with Westwood congestion control
Transmission control protocol-Westwood adopts a bet-
ter congestion control algorithm by estimating the avail-
able network bandwidth and is proposed for wireless
networks [23]. We coupled our loss recovery algorithms
with the congestion control of TCP-Westwood and gen-
erated a single ftp flow, the throughput of which is
shown in Figure 6c. We also generated ten simultaneous
ftp flows, and the average throughput is shown in Figure
6d.
• LE extends the performance of TCP Westwood. Using

the congestion control algorithm of Westwood, the per-
formance of LE is significantly better than those of the
other loss recovery algorithms, as shown in the Figure 6.
Even though TCP Westwood intelligently maintains a
larger cwnd compared to the AIMD under random

packet loss, the existing loss recovery cannot maintain
the throughput because of RTO expiry as packet loss
increases. This occurrence is illustrated in Figure 6c. In
the case of multiple flows, similar results are shown in
in Figure 6d. LE flows achieve almost full bandwidth uti-
lization because LE avoids RTO expiry and associated
wasted time.

4 Implementation of LE
We implemented the proposed architecture using the
Linux kernel version of 2.6.17 to assess the proposed
idea.

4.1 Logical implementations of the two lists
Instead of implementing the two lists explicitly, we
mimicked their behaviors by slightly modifying the
existing architecture.
The linux version of TCP uses a data structure called

scoreboardb to maintain a linked list of packets that
have been transmitted or will be transmitted as shown
in Figure 7a. Each entry in the list is called a socket buf-
fer (SKB), and contains a pointer to a data packet and
related control information such as the status. The
scoreboard maintains the SKBs of a transmitted packet
until it is properly ACKed by a receiver. Upon reception
of an ACK, TCP releases the corresponding SKB from
the list. Two pointers are used in the scoreboard; the
first one, sk_write_queue, points the first unacknow-
ledged packet and the second one, sk_send_head, points
the beginning of the packets that have not yet been
transmitted. The packets between the two pointers are
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those transmitted but not acked yet. The remaining
packets are to be transmitted next.
To implement the two-list architecture, we added an

additional control field, transmission order, to the SKB
data structure, to show the packet transmission order.
Whenever a packet was initially sent or resent, its trans-
mission order was recorded. Therefore, each packet
from the sk_write_queue to the sk_send_head had its
own transmission order. The RTXLIST was implemen-
ted using the status variable in the SKB data structure.
When the status variable was set as LOST, the packet
was considered to be in the RTXLIST. Sequential traver-
sing of the list allows for determination of those packets
in the RTXLIST. The dupCnt variable was also declared
in the SKB in order to implement the per packet acking
process. Whenever a duplicated ACK arrived, the
dupCnts of the corresponding SKB increased by one up
to the threshold of 3. Every SKB having the dupCnts
value was marked as LOST.
Our implementation is advantageous as follows. First,

by minimizing the restructuring of the SKB data struc-
ture, most of existing code can be reused without major
code development. Most of existing TCP codes were
reused except the parts related to packet recovery and
retransmission. Second, byte sequential ordering of
packets is needed when a packet is retransmitted due to
RTO timeout. By maintaining the sequential ordering,
the RTO timeout operation can be easily conducted.

4.2 Fine-grain RTT and RTO timer setting
In order to implement per packet RTT measurement,
which is used for per RTT congestion control and for
fine-grained RTO timer setting, we need to identify the
packet generating the current incoming ACK.
Initially, we only considered the Linux TCP timestamp

for the above purpose. However, we found this is not
sufficient. Some packets belonging to a single window
may sometimes have the same timestamp value due to
the granularity of the Linux TCP timestamp, on the
order of tens of milliseconds.
Additional information should be used to differentiate

the packets with the same timestamp. The variations in
cumulative ACK number and SACK blocks may be a
solution. For example, the increase in the cumulative

ACK number correctly determines which packet gener-
ates this ACK. In the case of a duplicated ACK, the
change in SACK blocks also provides information on
the increase in the cumulative ACK. Therefore, we need
to remember a few of the consecutive incoming ACKs
to trace the change in acking. Combining the differences
with the timestamp, the packet corresponding to an
incoming ACK can be determined.
For rapid implementation, however, we simply

included transmission order in the TCP header instead
of maintaining a few of ACKs. If the packet arrives at a
TCP receiver, the receiver echoes the transmission order
value in its replying ACK. We used the transmission
order in an ACK to find the associated packet in order
to measure per packet RTT.

4.3 Detection of lost packets
Upon arrival of a normal or duplicated ACK, TCP
sequentially compared the cumulative ACK number
with the bytes of the already sent SKBs in WAITLIST.
The SKBs having bytes less than or equivalent to the
cumulative ACK number were considered to be success-
fully arrived. If the bytes of an SKB did not belong to
the cumulative ACK number, SACK blocks were used
to ack the SKB. If the bytes of the SKB were less than
the largest byte in the SACK blocks and were not acked,
the dupCnt in the SKB increased by one. If the dupCnt
reached three, the SKB was marked as LOST. WAIT-
LIST scanning stopped until the next SKB reached the
value pointed by sk_send_head. The recognition of a
lost packet triggered the congestion control as described
in Section 2.2.

5 Experimental results
5.1 Testbed setup
To evaluate the performance of LE, we set up a testbed
as shown in Figure 8, consisting of three linux-based
PCs with kernel version 2.6.17. The two outer PCs were
used to mimic a sender and a receiver, while the middle
one emulated a network. We used the Netem [24] net-
work emulator, which enabled us to control packet drop
rates and round trip delays. To measure performance,
we used the iperf software tool [25]. In the emulation,
we fixed RTT to 20 ms and varied the packet drop rate

(a) Original Scoreboard (b) Modified Scoreboard

Figure 7 Implementation of two lists.
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from 0 to 10%. We limit the packet drop rate up to 10%
because TCP-RR is likely to malfunction as the packet
loss rate becomes more than 10% while TCP-Westwood
affords to achieve a transmission rate more than 10%
and even up to 20%. Thus, considering a realistic packet
drop rate for the fair comparison between TCP-West-
wood and TCP-RR, we have used 10% as the maximum
packet drop rate.

5.2 LE with various congestion control algorithms
We evaluated the performances of the new loss recovery
algorithm with two different congestion control algo-
rithms: TCP-westwood and TCP-RR. The results are
shown in Figure 9, and our main observations are as
follows.
• Though the new loss recovery algorithm achieved

better performance with TCP-Westwood, the perfor-
mance improvement was not as significant as that in the
simulation of Figure 6c.
• With TCP-RR congestion control, a performance

improvement of 50% was observed when the loss rate is
high.
5.2.1 TCP-Westwood
First, the performance of LE was better than that of
FACK. At the loss rate of 10%, LE achieved more than 4
Mbps while SACK and FACK achieves approximately
3.5 Mbps. The line with triangle tick shows the through-
put with a fixed congestion window of 10, which can be
considered as an upper bound. Observe that the

throughput slowly decreased with increasing loss rate.
Even though LE did not approach the ideal line, it
achieved almost 80% of the ideal value.
Second, though LE achieved a relatively higher

throughput, the testbed results were very different from
the simulation results of Figure 6c. We expected a
much better performance of LE with Westwood conges-
tion control. We investigated the issue to determine the
possible causes of the large discrepancies between the
simulation and emulation. It turned out that the West-
wood available bandwidth algorithm did not function as
well in the testbed experiment as in the simulation.
When packet loss rate was less than 0.1%, the measured
bandwidth approached the correct one. However, when
the loss rate was greater than 1%, the measured band-
width is smaller by 1 Mbps, which is why the testbed
results are poorer. Because the estimated bandwidth was
so low in the testbed, a worse performance was con-
cluded for Westwood. For this reason, the throughputs
of all loss recovery algorithms exponentially decreased
at packet loss rates greater than 1%. This experiment
led us to conclude that the bandwidth estimation algo-
rithm of TCP-Westwood does not perform well in a
real environment.
5.2.2 Simplified TCP-RR
Because the congestion control algorithm of TCP-West-
wood was not efficient, we implemented another TCP
variation called TCP-RR [14] to validate the effectivness
of the new proposal. Briefly, TCP-RR assumes that only
RTO expiry is equivalent to packet loss due to network
congestion. Multiple duplicate ACKs are due to wireless
transmission error. However, to maintain the fairness
with another TCP, the time of RTO expiry is less than
the traditional RTO expiry. We simply implemented
TCP-RR-like congestion control by adjusting the time of
RTO expiry to a smaller value.
The right plot of Figure 9 shows the performance dif-

ference between LE and FACK. The performance degra-
dation with packet error rate was smooth, and TCP-RR

Figure 8 Testbed configuration.

(a) (b)

Figure 9 Loss recovery performance of LE versus FACK when TCP-Westwood (left) and TCP-RR (right) congestion algorithms are used.
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maintained good throughput with a packet loss rate of
10%. LE with TCP-RR achieved 6 Mbps throughput at
the loss rate of 10%.

6 Conclusions
We proposed a new loss recovery architecture for TCP
and validated its effectiveness through extensive simula-
tion and emulation experiments. The new architecture
maintains packet transmission order so that loss recov-
ery is more effective. This feature is the greatest differ-
ence from the conventional loss recovery in TCP whose
loss recovery ability is seriously affected by the number
of lost packets and frequently causes unnecessary RTO
expiry. Our method sustains the loss recovery ability in
TCP irrespective of the number of lost packets. We
combined the new loss recovery algorithm with various
TCP congestion control algorithms such as AIMD,
TCP-Westwood, and TCP-RR and demonstrated higher
throughput for higher loss rates. We also demonstrated
that the proposed algorithm can be used for video trans-
mission over a lossy channel. We will extend our TCP
for multimedia transmission based on overlay multicast
in which TCP sessions are used either to construct a
logical multicast tree or to deliver multimedia streams.

Endnotes
aIn this simulation, NewReno eventually falls into RTO
expiry after retransmitting the fifth lost packet because
RTO expiry is much faster than sequential loss recovery
when NewReno should recover a numerous losses.
However, after RTO expiry retransmits the fifth packet,
the ACK of the fifth packet immediately arrives due to
the initial packet transmission. bThe term scoreboard
was first introduced for TCP SACK in order to maintain
the packet acking status. In Linux, it is used as a base
data structure for all kinds of TCP to keep track of the
packet acking status.
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