1,432 research outputs found

    Trends in Scale and Structure of Korea's Health Expenditure over Last Three Decades (1980-2009): Financing, Functions and Providers

    Get PDF
    This paper introduces statistics related to the size and composition of Korea's total health expenditure. The figures produced were tailored to the OECD's system of health accounts. Korea's total health expenditure in 2009 was estimated at 73.7 trillion won (US57.7billion).TheannualpercapitahealthexpenditurewasequivalenttoUS 57.7 billion). The annual per capita health expenditure was equivalent to US PPP 1,879. Korea's total health expenditure as a share of gross domestic product was 6.9% in 2009, far below the OECD average of 9.5%. Korea's public financing share of total health expenditure increased rapidly from less than 50% before 2000 to 58.2% in 2009. However, despite this growth, Korea's share remained the fourth lowest among OECD countries that had an average public share of 71.5%. Inpatient, outpatient, and pharmaceutical care accounted for 32.1%, 33.0%, and 23.7% of current health expenditure in 2009, respectively. A total of 41.1% of current health expenditure went to hospitals, 28.1% to providers of ambulatory healthcare (15.9% on doctor's clinics), and 17.9% to pharmacies. More investment in the translation of national health account data into policy-relevant information is suggested for future progress

    Optimization of magnetic flux density for fast MREIT conductivity imaging using multi-echo interleaved partial fourier acquisitions

    Get PDF
    BACKGROUND: Magnetic resonance electrical impedance tomography (MREIT) has been introduced as a non-invasive method for visualizing the internal conductivity and/or current density of an electrically conductive object by externally injected currents. The injected current through a pair of surface electrodes induces a magnetic flux density distribution inside the imaging object, which results in additional magnetic flux density. To measure the magnetic flux density signal in MREIT, the phase difference approach in an interleaved encoding scheme cancels out the systematic artifacts accumulated in phase signals and also reduces the random noise effect by doubling the measured magnetic flux density signal. For practical applications of in vivo MREIT, it is essential to reduce the scan duration maintaining spatial-resolution and sufficient contrast. In this paper, we optimize the magnetic flux density by using a fast gradient multi-echo MR pulse sequence. To recover the one component of magnetic flux density B(z), we use a coupled partial Fourier acquisitions in the interleaved sense. METHODS: To prove the proposed algorithm, we performed numerical simulations using a two-dimensional finite-element model. For a real experiment, we designed a phantom filled with a calibrated saline solution and located a rubber balloon inside the phantom. The rubber balloon was inflated by injecting the same saline solution during the MREIT imaging. We used the multi-echo fast low angle shot (FLASH) MR pulse sequence for MRI scan, which allows the reduction of measuring time without a substantial loss in image quality. RESULTS: Under the assumption of a priori phase artifact map from a reference scan, we rigorously investigated the convergence ratio of the proposed method, which was closely related with the number of measured phase encode set and the frequency range of the background field inhomogeneity. In the phantom experiment with a partial Fourier acquisition, the total scan time was less than 6 seconds to measure the magnetic flux density B(z) data with 128×128 spacial matrix size, where it required 10.24 seconds to fill the complete k-space region. CONCLUSION: Numerical simulation and experimental results demonstrated that the proposed method reduces the scanning time and provides the recovered B(z) data comparable to what we obtained by measuring complete k-space data

    Microspinning: Local Surface Mixing via Rotation of Magnetic Microparticles for Efficient Small-Volume Bioassays

    Get PDF
    The need for high-throughput screening has led to the miniaturization of the reaction volume of the chamber in bioassays. As the reactor gets smaller, surface tension dominates the gravitational or inertial force, and mixing efficiency decreases in small-scale reactions. Because passive mixing by simple diffusion in tens of microliter-scale volumes takes a long time, active mixing is needed. Here, we report an efficient micromixing method using magnetically rotating microparticles with patterned magnetization induced by magnetic nanoparticle chains. Because the microparticles have magnetization patterning due to fabrication with magnetic nanoparticle chains, the microparticles can rotate along the external rotating magnetic field, causing micromixing. We validated the reaction efficiency by comparing this micromixing method with other mixing methods such as simple diffusion and the use of a rocking shaker at various working volumes. This method has the potential to be widely utilized in suspension assay technology as an efficient mixing strategy

    Surface Sr segregation behaviors in a model thin film perovskite cathode for solid oxide fuel cells

    Get PDF
    Surface cation segregation, strontium (Sr) in particular, has been considered as one of crucial barriers to achieving a fast surface oxygen exchange rate of perovskite oxide electrodes for solid oxide fuel cells (SOFCs). However, the major driving force for the segregation phenomenon still remains unknown, and thus it is also unknown how to maximize the cathode performance. In this work, we fabricated epitaxial thin films of SrTi1-xFexO3-δ (STF) via pulsed laser deposition (PLD) and quantitatively characterized their microstructures, surface chemical compositions and oxygen exchange rates by a range of analysis tools, in this case HR-TEM, HR-XRD, angle resolved X-ray photoelectron spectroscopy (AR-XPS) and electrical conductivity relaxation (ECR). The use of well-defined epitaxial thin films not only guarantees high precision, reproducibility and reliability of the surface properties, but also enables us to control the degree of misfit strain by varying the choice of the substrate and the target composition. This, in combination with density functional theory (DTF) simulation, enabled to reveal a close relationship between the degree of surface Sr segregation and the misfit strain and thereby to identify the governing factors for the Sr segregation phenomenon

    Chrysin suppresses lipopolysaccharide-induced cyclooxygenase-2 expression through the inhibition of nuclear factor for IL-6 (NF-IL6) DNA-binding activity

    Get PDF
    AbstractChrysin is a natural, biologically active compound extracted from many plants, honey and propolis. It possesses potent anti-inflammation, anti-cancer and anti-oxidation properties. The mechanism by which chrysin suppresses COX-2 expression remains poorly understood. In the present report, we investigated the effect of chrysin on the expression of COX-2 in lipopolysaccharide (LPS)-activated Raw 264.7 cells. Chrysin significantly suppressed the LPS-induced COX-2 protein and mRNA expression in a dose-dependent manner. The ability of chrysin to suppress the expression of the COX-2 was investigated using luciferase reporters controlled by various cis-elements in COX-2 promoter region. Mutational analysis and electrophoretic mobility shift assay verified that nuclear factor for IL-6 was identified as responsible for the chrysin-mediated COX-2 downregulation. These results will provide new insights into the anti-inflammatory and anti-carcinogenic properties of chrysin

    Clinical Efficacy of Primary Tumor Volume Measurements: Comparison of Different Primary Sites

    Get PDF
    ObjectivesThe purpose of study was to determine the clinical efficacy of primary tumor volume measurements of different primary sites in the oropharynx compared to the oral cavity.MethodsA retrospective analysis of 85 patients with oral cavity or oropharynx cancer. The tumor area was manually outlined from axial magnetic resonance (MR) series. The software calculated the tumor volumes, automatically. The values of the primary tumor volumes were then subdivided into separate groups (≤3,500 mm3, >3,500 mm3).ResultsThe prognostic indicators were the cT and cN (oral cavity); age, primary site, cT, cN, and primary tumor volume (oropharynx) on the univariate analysis. There was no significant prognostic factor for oral cavity cancer on the multivariate analysis. Primary site, cN, and primary tumor volume were independent prognostic indicators for oropharynx cancer by multivariate analysis.ConclusionPrimary tumor volume measurement is a reliable way to stratify outcome, and make up for the weak points in the American Joint Committee on Cancer staging system with oropharynx cancer

    Fatigue Prediction of the Discharge Pipe in Reciprocating Compressor

    Get PDF
    In this paper, a fatigue prediction of the line discharge tube for reciprocating compressor being installed in a refrigerator was studied. The tube usually gets plenty of the repeated loads caused by the start and stop motion of a reciprocating compressor. There are two representative methods to predict the fatigue stress. At first the stress-life can be applied to the problem which takes a lot of repeated stress within the elastic strain range. Second is the strain-life method which can be used when it comes to the problem of a small repeated stress in the plastic strain range. This paper presents the stress-life method how the design parameters of a discharge pipe relate to the fatigue prediction and analyzes the co-relation between them

    Improved Sugar Production by Optimizing Planetary Mill Pretreatment and Enzyme Hydrolysis Process

    Get PDF
    This paper describes an optimization of planetary mill pretreatment and saccharification processes for improving biosugar production. Pitch pine (Pinus rigida) wood sawdust waste was used as biomass feedstock and the process parameters optimized in this study were the buffering media, the milling time, the enzyme quantity, and the incubation time. Glucose yields were improved when acetate buffer was used rather than citrate buffer. Initially, with each process variable tests, the optimal values were 100 minutes of milling, an enzyme concentration of 16 FPU/g-biomass, and a 12-hour enzymatic hydrolysis. Typically, interactions between these experimental conditions and their effects on glucose production were next investigated using RSM. Glucose yields from the Pinus rigida waste exceeded 80% with several of the conditions tested, demonstrating that milling can be used to obtain high levels of glucose bioconversion from woody biomass for biorefinery purposesopen

    The Benefits and Risks of Prophylactic Central Neck Dissection for Papillary Thyroid Carcinoma: Prospective Cohort Study

    Get PDF
    Objectives. This study evaluated the benefits of performing prophylactic central neck dissection (CND) with total thyroidectomy (TT) in management of papillary thyroid carcinoma (PTC) patients who were clinically node-negative at presentation. Methods. A total of 257 patients with stage T1 or T2 PTC and without preoperative evidence of lymph node involvement (N0) were enrolled in this prospective study. The patients were randomly assigned to two groups: (1) a total thyroidectomy (TT) group (n=104) or (2) a TT plus CND group (n=153). The two groups were compared for their perioperative data, complication rates, disease recurrence rates, and clinical outcomes. Results. The two groups of patients were similar in age, sex ratio, follow-up duration, and tumor size (P=0.227, 0.359, 0.214, and 0.878, resp.). The two groups showed similar rates of disease recurrence (3.9% in the TT group versus 3.3% in the TT plus CND group); however, complications occurred more frequently in the TT plus CND group; especially transient hypocalcemia (P=0.043). Conclusions. Patients treated with TT plus CND had a higher rate of complications with similar recurrence rate. We believe that CND may not be routinely recommended when treating patients with PTC
    corecore