1,109 research outputs found

    Characteristics of the Aragonitic Layer in Adult Oyster Shells, Crassostrea gigas: Structural Study of Myostracum including the Adductor Muscle Scar

    Get PDF
    Myostracum, which is connected from the umbo to the edge of a scar, is not a single layer composed of prismatic layers, but a hierarchically complex multilayered shape composed of minerals and an organic matrix. Through the analysis of the secondary structure, the results revealed that a β-antiparallel structure was predominant in the mineral phase interface between the myostracum (aragonite) and bottom folia (calcite). After the complete decalcification and deproteinization, the membrane obtained from the interface between the myostracum buried in upper folia, and the bottom folia was identified as chitin. The transitional zone in the interface between the adductor muscle scar and folia are verified. The myostracum disappeared at the edge of the scar of the posterior side. From this study, the entire structure of the myostracum from the adult oyster shell of Crassostrea gigas could be proposed

    Evaluation of the usefulness of three-dimensional optical coherence tomography in a guinea pig model of endolymphatic hydrops induced by surgical obliteration of the endolymphatic duct

    Get PDF
    Optical coherence tomography (OCT) has advanced significantly over the past two decades and is currently used extensively to monitor the internal structures of organs, particularly in ophthalmology and dermatology. We used ethylenediamine tetra-acetic acid (EDTA) to decalcify the bony walls of the cochlea and investigated the inner structures by deep penetration of light into the cochlear tissue using OCT on a guinea pig model of endolymphatic hydrops (EH), induced by surgical obliteration of the endolymphatic duct. The structural and functional changes associated with EH were identified using OCT and auditory brainstem response tests, respectively. We also evaluated structural alterations in the cochlea using three-dimensional reconstruction of the OCT images, which clearly showed physical changes in the cochlear structures. Furthermore, we found significant anatomical variations in the EH model and conducted graphical analysis by strial atrophy for comparison. The physical changes included damage to and flattening of the organ of Corti-evidence of Reissner's membrane distention-and thinning of the lateral wall. These results indicate that observation of EDTA-decalcified cochlea using OCT is significant in examination of gradual changes in the cochlear structures that are otherwise not depicted by hematoxylin and eosin staining © The Authorsopen0

    PPM1A Controls Diabetic Gene Programming through Directly Dephosphorylating PPAR?? at Ser273

    Get PDF
    Peroxisome proliferator-activated receptor gamma (PPAR gamma) is a master regulator of adipose tissue biology. In obesity, phosphorylation of PPAR gamma at Ser273 (pSer273) by cyclin-dependent kinase 5 (CDK5)/extracellular signal-regulated kinase (ERK) orchestrates diabetic gene reprogramming via dysregulation of specific gene expression. Although many recent studies have focused on the development of non-classical agonist drugs that inhibit the phosphorylation of PPAR gamma at Ser273, the molecular mechanism of PPAR gamma dephosphorylation at Ser273 is not well characterized. Here, we report that protein phosphatase Mg2+/Mn2+-dependent 1A (PPM1A) is a novel PPAR gamma phosphatase that directly dephosphorylates Ser273 and restores diabetic gene expression which is dysregulated by pSer273. The expression of PPM1A significantly decreases in two models of insulin resistance: diet-induced obese (DIO) mice and db/db mice, in which it negatively correlates with pSer273. Transcriptomic analysis using microarray and genotype-tissue expression (GTEx) data in humans shows positive correlations between PPM1A and most of the genes that are dysregulated by pSer273. These findings suggest that PPM1A dephosphorylates PPAR gamma at Ser273 and represents a potential target for the treatment of obesity-linked metabolic disorders

    A Photometric and Spectroscopic Study of the Short-Period Algol EW Bo\"{o}tis with a δ\delta Sct Pulsator

    Full text link
    In this paper, we present TESS photometry and high-resolution spectra of the short-period Algol EW Boo. We obtained double-lined radial velocities (RVs) from the time-series spectra and measured the effective temperature of the primary star as Teff,1T_{\rm{eff,1}} = 8560 ±\pm 118 K. For the orbital period study, we collected all times of minima available for over the last 30 years. It was found that the eclipse timing variation of the system could be represented by a periodic oscillation of 17.6 ±\pm 0.3 years with a semi-amplitude of 0.0041 ±\pm 0.0001 d. The orbital and physical parameters were derived by simultaneously analyzing the TESS light and RV curves using the Wilson-Devinney (WD) binary star modeling code. The component masses and radii were showed over 3% precision: M1M_{1} = 2.67 ±\pm 0.08 M_{\odot}, M2M_{2} = 0.43 ±\pm 0.01 M_{\odot}, R1R_{1} = 2.01 ±\pm 0.02 R_{\odot}, and R2R_{2} = 1.35 ±\pm 0.01 R_{\odot}. Furthermore, multiple frequency analyses were performed for the light-curve residuals from the WD model. As a result, we detected 17 pressure-mode pulsations in the region of 40.15 - 52.37 d1^{-1}. The absolute dimensions and pulsation characteristics showed that the δ\delta Sct pulsator was the more massive and hotter primary star of the EW Boo.Comment: 27 pages, 8 figures, Accepted for publication in A
    corecore