331 research outputs found

    Timeliness of national notifiable diseases surveillance system in Korea: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the increase of international travels, infectious disease control is gaining a greater importance across regional borders. Adequate surveillance system function is crucial to prevent a global spread of infectious disease at the earliest stage. There have been limited reports on the characteristics of infectious disease surveillance in Asia. The authors studied the timeliness of the Korean National Notifiable Disease Surveillance System with regard to major notifiable diseases from 2001 to 2006.</p> <p>Methods</p> <p>Six notifiable infectious diseases reported relatively frequently were included in this study. Five diseases were selected by the criteria of reported cases > 100 per year: typhoid fever, shigellosis, mumps, scrub typhus, and hemorrhagic fever with renal syndrome. In addition, dengue fever was also included to represent an emerging disease, despite its low number of cases. The diseases were compared for the proportion notified within the recommended time limits, median time lags, and for the cumulative distribution of time lags at each surveillance step between symptom onset and date of notification to the Korea Centers for Disease Control and Prevention (KCDC).</p> <p>Results</p> <p>The proportion of cases reported in time was lower for disease groups with a recommended time limit of 1 day compared with 7 days (60%–70% vs. > 80%). The median time from disease onset to notification to KCDC ranged between 6 and 20 days. The median time from onset to registration at the local level ranged between 2 and 15 days. Distribution of time lags showed that main delays arose in the time from onset to diagnosis. There were variations in timeliness by disease categories and surveillance steps.</p> <p>Conclusion</p> <p>Time from disease onset to diagnosis generally contributed most to the delay in reporting. It is needed to promote public education and to improve clinical guidelines. Rapid reporting by doctors should be encouraged, and unification of recommended reporting time limit can be helpful. Our study also demonstrates the utility of the overall assessment of time-lag distributions for disease-specific strategies to improve surveillance.</p

    Microarray-based gene set analysis: a comparison of current methods

    Get PDF
    BACKGROUND: The analysis of gene sets has become a popular topic in recent times, with researchers attempting to improve the interpretability and reproducibility of their microarray analyses through the inclusion of supplementary biological information. While a number of options for gene set analysis exist, no consensus has yet been reached regarding which methodology performs best, and under what conditions. The goal of this work was to examine the performance characteristics of a collection of existing gene set analysis methods, on both simulated and real microarray data sets. Of particular interest was the potential utility gained through the incorporation of inter-gene correlation into the analysis process. RESULTS: Each of six gene set analysis methods was applied to both simulated and publicly available microarray data sets. Overall, the various methodologies were all found to be better at detecting gene sets that moved from non-active (i.e., genes not expressed) to active states (or vice versa), rather than those that simply changed their level of activity. Methods which incorporate correlation structures were found to provide increased ability to detect altered gene sets in some settings. CONCLUSION: Based on the results obtained through the analysis of simulated data, it is clear that the performance of gene set analysis methods is strongly influenced by the features of the data set in question, and that methods which incorporate correlation structures into the analysis process tend to achieve better performance, relative to methods which rely on univariate test statistics

    Coordinated Regulation of ATF2 by miR-26b in γ-Irradiated Lung Cancer Cells

    Get PDF
    MicroRNA regulates cellular responses to ionizing radiation (IR) through translational control of target genes. We analyzed time-series changes in microRNA expression following γ-irradiation in H1299 lung cancer cells using microarray analysis. Significantly changed IR-responsive microRNAs were selected based on analysis of variance analysis, and predicted target mRNAs were enriched in mitogen-activated protein kinase (MAPK) signaling. Concurrent analysis of time-series mRNA and microRNA profiles uncovered that expression of miR-26b was down regulated, and its target activating transcription factor 2 (ATF2) mRNA was up regulated in γ-irradiated H1299 cells. IR in miR-26b overexpressed H1299 cells could not induce expression of ATF2. When c-Jun N-terminal kinase activity was inhibited using SP600125, expression of miR-26b was induced following γ-irradiation in H1299 cells. From these results, we concluded that IR-induced up-regulation of ATF2 was coordinately enhanced by suppression of miR-26b in lung cancer cells, which may enhance the effect of IR in the MAPK signaling pathway

    Systemic chemotherapy with doxorubicin, cisplatin and capecitabine for metastatic hepatocellular carcinoma

    Get PDF
    BACKGROUND: Although numerous chemotherapeutic agents have been tested, the role of systemic chemotherapy for hepatocellular carcinoma (HCC) has not been clarified. New therapeutic strategies are thus needed to improve outcomes, and we designed this study with new effective drug combination. METHODS: Twenty-nine patients with histologically-confirmed, metastatic HCC received a combination chemotherapy with doxorubicin 60 mg/m(2 )and cisplatin 60 mg/m(2 )on day 1, plus capecitabine 2000 mg/m(2)/day as an intermittent regimen of 2 weeks of treatment followed by a 1-week rest. RESULTS: The median age was 49 years (range, 32–64) and 19 patients were hepatitis B virus seropositive. Child-Pugh class was A in all patients and 4 had Zubrod performance status of 2. The objective response rate was 24% (95% CI 9–40) with 6 stable diseases. The chemotherapy was generally well tolerated despite one treatment-related death. CONCLUSION: Combination chemotherapy with doxorubicin, cisplatin and capecitabine produced modest antitumor activity with tolerable adverse effects in patients with metastatic HCC

    Early Evolution of Conserved Regulatory Sequences Associated with Development in Vertebrates

    Get PDF
    Comparisons between diverse vertebrate genomes have uncovered thousands of highly conserved non-coding sequences, an increasing number of which have been shown to function as enhancers during early development. Despite their extreme conservation over 500 million years from humans to cartilaginous fish, these elements appear to be largely absent in invertebrates, and, to date, there has been little understanding of their mode of action or the evolutionary processes that have modelled them. We have now exploited emerging genomic sequence data for the sea lamprey, Petromyzon marinus, to explore the depth of conservation of this type of element in the earliest diverging extant vertebrate lineage, the jawless fish (agnathans). We searched for conserved non-coding elements (CNEs) at 13 human gene loci and identified lamprey elements associated with all but two of these gene regions. Although markedly shorter and less well conserved than within jawed vertebrates, identified lamprey CNEs are able to drive specific patterns of expression in zebrafish embryos, which are almost identical to those driven by the equivalent human elements. These CNEs are therefore a unique and defining characteristic of all vertebrates. Furthermore, alignment of lamprey and other vertebrate CNEs should permit the identification of persistent sequence signatures that are responsible for common patterns of expression and contribute to the elucidation of the regulatory language in CNEs. Identifying the core regulatory code for development, common to all vertebrates, provides a foundation upon which regulatory networks can be constructed and might also illuminate how large conserved regulatory sequence blocks evolve and become fixed in genomic DNA

    Instabilities in the wake of an inclined prolate spheroid

    Full text link
    We investigate the instabilities, bifurcations and transition in the wake behind a 45-degree inclined 6:1 prolate spheroid, through a series of direct numerical simulations (DNS) over a wide range of Reynolds numbers (Re) from 10 to 3000. We provide a detailed picture of how the originally symmetric and steady laminar wake at low Re gradually looses its symmetry and turns unsteady as Re is gradually increased. Several fascinating flow features have first been revealed and subsequently analysed, e.g. an asymmetric time-averaged flow field, a surprisingly strong side force etc. As the wake partially becomes turbulent, we investigate a dominating coherent wake structure, namely a helical vortex tube, inside of which a helical symmetry alteration scenario was recovered in the intermediate wake, together with self-similarity in the far wake.Comment: Book chapter in "Computational Modeling of Bifurcations and Instabilities in Fluid Dynamics (A. Gelfgat ed.)", Springe

    Chloroquine Mediated Modulation of Anopheles gambiae Gene Expression

    Get PDF
    Plasmodium development in the mosquito is crucial for malaria transmission and depends on the parasite's interaction with a variety of cell types and specific mosquito factors that have both positive and negative effects on infection. Whereas the defensive response of the mosquito contributes to a decrease in parasite numbers during these stages, some components of the blood meal are known to favor infection, potentiating the risk of increased transmission. The presence of the antimalarial drug chloroquine in the mosquito's blood meal has been associated with an increase in Plasmodium infectivity for the mosquito, which is possibly caused by chloroquine interfering with the capacity of the mosquito to defend against the infection.In this study, we report a detailed survey of the Anopheles gambiae genes that are differentially regulated by the presence of chloroquine in the blood meal, using an A. gambiae cDNA microarray. The effect of chloroquine on transcript abundance was evaluated separately for non-infected and Plasmodium berghei-infected mosquitoes. Chloroquine was found to affect the abundance of transcripts that encode proteins involved in a variety of processes, including immunity, apoptosis, cytoskeleton and the response to oxidative stress. This pattern of differential gene expression may explain the weakened mosquito defense response which accounts for the increased infectivity observed in chloroquine-treated mosquitoes.The results of the present study suggest that chloroquine can interfere with several putative mosquito mechanisms of defense against Plasmodium at the level of gene expression and highlight the need for a better understanding of the impacts of antimalarial agents on parasite transmission

    Multiple Roles for the Non-Coding RNA SRA in Regulation of Adipogenesis and Insulin Sensitivity

    Get PDF
    Peroxisome proliferator-activated receptor-γ (PPARγ) is a master transcriptional regulator of adipogenesis. Hence, the identification of PPARγ coactivators should help reveal mechanisms controlling gene expression in adipose tissue development and physiology. We show that the non-coding RNA, Steroid receptor RNA Activator (SRA), associates with PPARγ and coactivates PPARγ-dependent reporter gene expression. Overexpression of SRA in ST2 mesenchymal precursor cells promotes their differentiation into adipocytes. Conversely, knockdown of endogenous SRA inhibits 3T3-L1 preadipocyte differentiation. Microarray analysis reveals hundreds of SRA-responsive genes in adipocytes, including genes involved in the cell cycle, and insulin and TNFα signaling pathways. Some functions of SRA may involve mechanisms other than coactivation of PPARγ. SRA in adipocytes increases both glucose uptake and phosphorylation of Akt and FOXO1 in response to insulin. SRA promotes S-phase entry during mitotic clonal expansion, decreases expression of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip1, and increases phosphorylation of Cdk1/Cdc2. SRA also inhibits the expression of adipocyte-related inflammatory genes and TNFα-induced phosphorylation of c-Jun NH2-terminal kinase. In conclusion, SRA enhances adipogenesis and adipocyte function through multiple pathways
    corecore