3,164 research outputs found
Determinants of Mid-scale Hotel Brand Equity
The traditional brand management in the hotel industry is facing a great challenge as numerous brands provide many choices to hotel guests. In such competitive environments, hotel firms realize that capitalizing on one of the most important assests they own- the brand- is critical to achieve a premier growth goal not only rapidly but also in a cost- effective way. THe purpose of this study is to examine the determinants of cutsomer-based hotel brand equity for the mid-priced U.S. lodging segment by assessing the impacts of four-widely accepted brand equity dimensions: brand awareness, brand associations, percieved quality and customer loyalty. 277 travelers participated in this study at the airport in a Midwestern city. Perceived quality, brand loyalty, brand associations were found to be the core components of brand equity, while brand awareness, a seemingly important source of brand equity, did not exert a significant influence on building brand equity of mid-priced hotels. The result of this study sheds insight about how to create, manage, and evaluate a distinctive and successful hotel brand
Curvature-enhanced spin-orbit coupling in a carbon nanotube
Structure of the spin-orbit coupling varies from material to material and
thus finding the correct spin-orbit coupling structure is an important step
towards advanced spintronic applications. We show theoretically that the
curvature in a carbon nanotube generates two types of the spin-orbit coupling,
one of which was not recognized before. In addition to the topological
phase-related contribution of the spin-orbit coupling, which appears in the
off-diagonal part of the effective Dirac Hamiltonian of carbon nanotubes, there
is another contribution that appears in the diagonal part. The existence of the
diagonal term can modify spin-orbit coupling effects qualitatively, an example
of which is the electron-hole asymmetric spin splitting observed recently, and
generate four qualitatively different behavior of energy level dependence on
parallel magnetic field. It is demonstrated that the diagonal term applies to a
curved graphene as well. This result should be valuable for spintronic
applications of graphitic materials.Comment: 6 pages, 4 figures, to be published on Physical Review
Ballistic spin field-effect transistors: Multichannel effects
We study a ballistic spin field-effect transistor (SFET) with special
attention to the issue of multi-channel effects. The conductance modulation of
the SFET as a function of the Rashba spin-orbit coupling strength is
numerically examined for the number of channels ranging from a few to close to
100. Even with the ideal spin injector and collector, the conductance
modulation ratio, defined as the ratio between the maximum and minimum
conductances, decays rapidly and approaches one with the increase of the
channel number. It turns out that the decay is considerably faster when the
Rashba spin-orbit coupling is larger. Effects of the electronic coherence are
also examined in the multi-channel regime and it is found that the coherent
Fabry-Perot-like interference in the multi-channel regime gives rise to a
nested peak structure. For a nonideal spin injector/collector structure, which
consists of a conventional metallic ferromagnet-thin insulator-2DEG
heterostructure, the Rashba-coupling-induced conductance modulation is strongly
affected by large resonance peaks that arise from the electron confinement
effect of the insulators. Finally scattering effects are briefly addressed and
it is found that in the weakly diffusive regime, the positions of the resonance
peaks fluctuate, making the conductance modulation signal sample-dependent.Comment: 18 pages, 15 figure
Tuning Locality of Pair Coherence in Graphene-based Andreev Interferometers
We report on gate-tuned locality of superconductivity-induced phase-coherent magnetoconductance oscillations in a graphene-based Andreev interferometer, consisting of a T-shaped graphene bar in contact with a superconducting Al loop. The conductance oscillations arose from the flux change through the superconducting Al loop, with gate-dependent Fraunhofer-type modulation of the envelope. We confirm a transitional change in the character of the pair coherence, between local and nonlocal, in the same device as the effective length-to-width ratio of the device was modulated by tuning the pair-coherence length xi(T) in the graphene layer.open1133sciescopu
Nano-mechanical behavior of ultra-stable amorphous metallic thin films
Metallic glass has amorphous structure that behave mechanically like solids but show catastrophic failure due to shear band propagation induced by short range order structure, and they are generally produced by quenching. Recently, it is observed that the slower cooling rate provides the larger time available for atoms to rearrange structure before freezing in glassy state, leading to glass transition temperature and thermal stability. These glasses with enhanced thermal stability synthesized by controlled cooling rate make it useful in various field such as mechanical or oxidation protection material. However, mechanical behavior for metallic glass with extraordinary thermodynamic and kinetic stability has not been studied. In this research, we developed a ultrastable metallic glass thin film by physical vapor deposition process at ambient temperature. Thermal stability is investigated using acceleration testing. Mechanical properties are measured using in-situ tensile testing and discuss thermal stability and fracture behavior dependent on compositio
New perspectives on the management of hepatocellular carcinoma with portal vein thrombosis
Despite advances in the treatment of hepatocellular carcinoma (HCC), managing HCC with portal vein thrombosis (PVT) remains challenging. PVT is present in 10-40% of HCC cases at the time of diagnosis and its therapeutic options are very limited. Current guidelines mainly recommend sorafenib for advanced HCC with PVT, but surgery, transarterial chemoemolization, external radiation therapy, radioembolization, transarterial infusion chemotherapy, and combination therapy are also still used. Furthermore, several new emerging therapies such as the administration of immunotherapeutic agents and oncolytic viruses are under investigation. This comprehensive literature review presents current and future management options with their relative advantages and disadvantages and summary data on overall survival
Transarterial chemoembolization using drug eluting beads for the treatment of hepatocellular carcinoma: Now and future
Transarterial chemoembolization (TACE) using doxorubicin-eluting beads (DEBs) have been introduced as a novel device which ensures more sustained and tumor-selective drug delivery and permanent embolization compared to conventional TACE with lipiodol. Studies highlighting the use of TACE with DEBs for the treatment of hepatocellular carcinoma (HCC) have shown similar or better results compared to conventional TACE with lipiodol. TACE with DEBs is increasingly being performed interchangeably with conventional TACE. This review assessed the characteristics, clinical outcomes and future direction of TACE with DEBs compared to conventional TACE
Biomarkers of Oxidative Stress and Endogenous Antioxidants for Patients with Chronic Subjective Dizziness
As a neurotologic disorder of persistent non-vertiginous dizziness, chronic subjective dizziness (CSD) arises unsteadily by psychological and physiological imbalance. The CSD is hypersensitivity reaction due to exposure to complex motions visual stimuli. However, the pathophysiological features and mechanism of the CSD still remains unclearly. The present study was purposed to establish possible endogenous contributors of the CSD using serum samples from patients with the CSD. A total 199 participants were gathered and divided into two groups; healthy (n = 152, male for 61, and female for 91) and CSD (n = 47, male for 5, female for 42), respectively. Oxidative stress parameters such as, hydrogen peroxide and reactive substances were significantly elevated (p < 0.01 or p < 0.001), whereas endogenous antioxidant components including total glutathione contents, and activities of catalase and superoxide dismutase were significantly deteriorated in the CSD group (p < 0.01 or p < 0.001) as comparing to the healthy group, respectively. Serum levels of tumor necrosis factor -α and interferon-γ were significantly increased in the CSD participants (p < 0.001). Additionally, emotional stress related hormones including cortisol, adrenaline, and serotonin were abnormally observed in the serum levels of the CSD group (p < 0.01 or p < 0.001). Our results confirmed that oxidative stress and antioxidants are a critical contributor of pathophysiology of the CSD, and that is first explored to establish features of redox system in the CSD subjects compared to a healthy population
Curvature-induced spin-orbit coupling and spin relaxation in a chemically clean single-layer graphene
The study of spin-related phenomena in materials requires knowledge on the
precise form of effective spin-orbit coupling of conducting carriers in the
solid-states systems. We demonstrate theoretically that curvature induced by
corrugations or periodic ripples in single-layer graphenes generates two types
of effective spin-orbit coupling. In addition to the spin-orbit coupling
reported previously that couples with sublattice pseudospin and corresponds to
the Rashba-type spin-orbit coupling in a corrugated single-layer graphene,
there is an additional spin-orbit coupling that does not couple with the
pseudospin, which can not be obtained from the extension of the
curvature-induced spin-orbit coupling of carbon nanotubes. Via numerical
calculation we show that both types of the curvature-induced spin-orbit
coupling make the same order of contribution to spin relaxation in chemically
clean single-layer graphene with nanoscale corrugation. The spin relaxation
dependence on the corrugation roughness is also studied.Comment: 8 pages, 4 figure
Microspinning: Local Surface Mixing via Rotation of Magnetic Microparticles for Efficient Small-Volume Bioassays
The need for high-throughput screening has led to the miniaturization of the reaction volume of the chamber in bioassays. As the reactor gets smaller, surface tension dominates the gravitational or inertial force, and mixing efficiency decreases in small-scale reactions. Because passive mixing by simple diffusion in tens of microliter-scale volumes takes a long time, active mixing is needed. Here, we report an efficient micromixing method using magnetically rotating microparticles with patterned magnetization induced by magnetic nanoparticle chains. Because the microparticles have magnetization patterning due to fabrication with magnetic nanoparticle chains, the microparticles can rotate along the external rotating magnetic field, causing micromixing. We validated the reaction efficiency by comparing this micromixing method with other mixing methods such as simple diffusion and the use of a rocking shaker at various working volumes. This method has the potential to be widely utilized in suspension assay technology as an efficient mixing strategy
- …