4,468 research outputs found

    P-13 “But a Woman Who Fears the Lord is to Be Praised”: A Practical Vision in Proverbs 31

    Get PDF
    Proverbs begins with an exposition on what the “fear of the Lord” entails and ends with the description of the woman of noble character who fears the Lord (Proverbs 31:30). As few scholars have considered the woman of Proverbs 31 in connection to the “fear of the Lord,” this project overviews aspects of the “fear of the Lord” in the Old Testament, including all specific verses containing the phrase, and examines the significance of their connections with Proverbs 31. The contributions of this study include theological and practical implications of what it means to live a life fearing the Lord

    An examination of acute cross-over effects following unilateral low intensity concentric and eccentric exercise

    Get PDF
    We compared the effects of low intensity concentric (CON) and eccentric (ECC) exercise on the force and neural responses of the dominant (exercised) elbow flexors (EFs), and studied if these conditions could induce cross-over effects to the contralateral (non-exercised) EFs. Fifteen subjects (8 males) completed all conditions (CON and ECC: 6 sets of low intensity exercise to failure; control: rest) in separate visits with a randomized order. Maximal isometric force and electromyography (EMG) of the dominant and contralateral EFs were assessed at pre, immediate-, 24-, and 48-h-post. Two-factor (condition and time) linear mixed-model analyses were performed to examine the force and EMG responses. Immediately post CON, contralateral EFs force was significantly (p = 0.026) higher (12.41%) than control, but no cross-over effects regarding the neural responses were observed. Immediately post ECC, dominant EFs force was significantly lower in ECC, compared to CON (p = 0.003) and control (p \u3c 0.001). This force remained depressed at 24- and 48-h post ECC, when compared to CON (p \u3c 0.001) and control (p \u3c 0.001). Our data suggests that submaximal unilateral exercises are not likely to impair contralateral muscle strength performance. Instead, concentric exercises may acutely improve muscle strength for the contralateral limb. However, this effect is not explained by changes in muscle excitation

    Sex comparisons of agonist and antagonist muscle electromyographic parameters during two different submaximal isometric fatiguing tasks

    Get PDF
    © 2019 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. To examine the task failure time of the force- and position-based submaximal elbow flexion fatiguing tasks for both sexes, twelve men and eight women visited the laboratory for two separate experimental occasions. During the experiment, they pulled against a rigid restraint for the force task and maintained a constant elbow joint angle to support an equivalent inertial load for the position task. For both fatiguing tasks (50% of the isometric strength at the elbow joint angle of 135 degree), the task failure time, along with the surface electromyographic (EMG) amplitude and mean frequency (MNF) were measured. The average failure time was longer for the force task than that for the position task (sexes combined: 39.6 ± 16.6 sec vs. 33.9 ± 14.9 sec, P = 0.033). In addition, men were overall less fatigable than women (tasks combined: 42.0 ± 14.7 sec vs. 28.7 ± 10.3 sec, P = 0.020). The multiple regression analyses showed that the task failure time in women was solely predicted by the rate of change of the triceps EMG MNF. Thus, more fatigability of women in this study was likely due to the quicker fatiguing rate of the antagonist triceps brachii muscle. Different from most previous studies that have used 90-degree elbow joint angle, the current 135-degree joint angle setup might have created a situation where greater muscle activity from the related muscles (e.g., the antagonist) were required for women than for men to stabilize the joint, thereby resulting in a shorter task failure time

    A comparison of motor unit control strategies between two different isometric tasks

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Background: This study examined the motor unit (MU) control strategies for non-fatiguing isometric elbow flexion tasks at 40% and 70% maximal voluntary isometric contraction. Methods: Nineteen healthy individuals performed two submaximal tasks with similar torque levels: contracting against an immovable object (force task), and maintaining the elbow joint angle against an external load (position task). Surface electromyographic (EMG) signals were collected from the agonist and antagonist muscles. The signals from the agonist were decomposed into individual action potential trains. The linear regression analysis was used to examine the MU recruitment threshold (RT) versus mean firing rates (MFR), and RT versus derecruitment threshold (DT) relationships. Results: Both agonist and antagonist muscles’ EMG amplitudes did not differ between two tasks. The linear slopes of the MU RT versus MFR and RT versus DT relationships during the position task were more negative (p = 0.010) and more positive (p = 0.023), respectively, when compared to the force task. Conclusions: To produce a similar force output, the position task may rely less on the recruitment of relatively high-threshold MUs. Additionally, as the force output decreases, MUs tend to derecruit at a higher force level during the position task

    Effect of repeated eccentric exercise on muscle damage markers and motor unit control strategies in arm and hand muscle

    Get PDF
    To examine the contralateral repeated bout effect (CL-RBE) on muscle damage markers and motor unit (MU) control strategies, seventeen healthy adults performed two bouts of 60 eccentric contractions with elbow flexor (EF group; n ​= ​9) or index finger abductor (IA group; n ​= ​8) muscles, separated by 1 week. All participants randomly performed eccentric exercise on either the right or left arm or hand muscles, and muscle damage markers and submaximal trapezoid contraction tests were conducted pre, post, 1- and 2-day post eccentric protocol. One week after the first bout, the same exercise protocol and measurements were performed on the contralateral muscles. Surface electromyographic (EMG) signals were collected from biceps brachii (BB) or first dorsal interosseous (FDI) during maximal and submaximal tests. The linear regression analyses were used to examine MU recruitment threshold versus mean firing rate and recruitment threshold versus derecruitment threshold relationships. EMG amplitude from BB (bout 1 vs. bout 2 ​= ​65.71% ​± ​22.92% vs. 43.05% ​± ​18.97%, p ​= ​0.015, d ​= ​1.077) and the y-intercept (group merged) from the MU recruitment threshold versus derecruitment threshold relationship (bout 1 vs. bout 2 ​= ​−7.10 ​± ​14.20 vs. 0.73 ​± ​16.24, p ​= ​0.029, d ​= ​0.513) at 50% MVIC were significantly different between two bouts. However, other muscle damage markers did not show any CL-RBE in both muscle groups. Therefore, despite changes in muscle excitation and MU firing behavior, our results do not support the existence of CL-RBE on BB and FDI muscles

    Mutual Composite Fermion and composite Boson approaches to balanced and imbalanced bilayer quantum Hall system: an electronic analogy of the Helium 4 system

    Full text link
    We use both Mutual Composite Fermion (MCF) and Composite Boson (CB) approach to study balanced and im-balanced Bi-Layer Quantum Hall systems (BLQH) and make critical comparisons between the two approaches. We find the CB approach is superior to the MCF approach in studying ground states with different kinds of broken symmetries. In the phase representation of the CB theory, we first study the Excitonic superfluid state (ESF). The theory puts spin and charge degree freedoms in the same footing, explicitly bring out the spin-charge connection and classify all the possible excitations in a systematic way. Then in the dual density representation of the CB theory, we study possible intermediate phases as the distance increases. We propose there are two critical distances dc1<dc2 d_{c1} < d_{c2} and three phases as the distance increases. When 0<d<dc1 0 < d < d_{c1} , the system is in the ESF state which breaks the internal U(1) U(1) symmetry, when dc1<d<dc2 d_{c1} < d < d_{c2} , the system is in an Pseudo-spin density wave (PSDW) state which breaks the translational symmetry, there is a first order transition at dc1 d_{c1} driven by the collapsing of magneto-roton minimum at a finite wavevector in the pseudo-spin channel. When dc2<d< d_{c2} < d < \infty , the system becomes two weakly coupled ν=1/2 \nu =1/2 Composite Fermion Fermi Liquid (FL) state. There is also a first order transition at d=dc2 d= d_{c2} . We construct a quantum Ginzburg Landau action to describe the transition from ESF to PSDW which break the two completely different symmetries. By using the QGL action, we explicitly show that the PSDW takes a square lattice and analyze in detail the properties of the PSDW at zero and finite temperature.Comment: 29 PRB pages, 18 figures, 2 tables, REVTEX

    Unilateral hamstring foam rolling does not impair strength but the rate of force development of the contralateral muscle

    Get PDF
    Background Self-administered foam rolling (SAFR) is an effective massage technique often used in sport and rehabilitation settings to improve range of motion (ROM) without impairing the strength performance. However, the effects of unilateral SAFR on contralateral non-intervened muscle’s rate of force development (RFD) are unknown. Therefore, the purpose of this investigation was to examine the acute effects of unilateral hamstrings SAFR on the contralateral limb flexibility, the isometric strength, and the RFD parameters. Methods Thirty-four subjects (21 women) completed two separate randomly sequenced experimental visits, during which the control (rested for 10 min) or ten, 30-second SAFR were performed with the dominant hamstring muscle group. Before (Pre) and after (Post) the interventions, the contralateral hip flexion passive ROM, the maximal explosive isometric strength of the contralateral knee flexors with the corresponding prime mover muscles’ surface electromyographic (EMG) amplitude were measured. Separate two-way (time ×intervention) repeated measures analyses of variance (ANOVAs) were used to examine the potential changes of the dependent variables. Results The SAFR significantly improved the contralateral limb ROM (Pre vs. Post: 68.3 ± 21.0 vs. 73.2 ± 23.2 degrees, p < 0.001; d = 0.22). No change was found for the contralateral isometric strength or the maximal EMG amplitude. For the RFD parameters, the percent changes of the RFDs for the first 50, 100, and 200 ms of the maximal explosive isometric contraction were −31.2%, −16.8%, and −10.1%, respectively, following the unilateral SAFR, relative to the control condition. In addition, the decrement of the first 50-ms RFD reached statistical significance (p = 0.007; Cohen’s d = 0.44). Conclusion Ten sets of 30-second unilateral hamstring SAFR improved the ROM of the non-intervened contralateral limb, but decreased its ability to generate force, especially during the early phase (e.g., 50 ms) of the maximal explosive contraction
    corecore