1,597 research outputs found

    Highly tunable repetition-rate multiplication of mode-locked lasers using all-fibre harmonic injection locking

    Full text link
    Higher repetition-rate optical pulse trains have been desired for various applications such as high-bit-rate optical communication, photonic analogue-to-digital conversion, and multi- photon imaging. Generation of multi GHz and higher repetition-rate optical pulse trains directly from mode-locked oscillators is often challenging. As an alternative, harmonic injection locking can be applied for extra-cavity repetition-rate multiplication (RRM). Here we have investigated the operation conditions and achievable performances of all-fibre, highly tunable harmonic injection locking-based pulse RRM. We show that, with slight tuning of slave laser length, highly tunable RRM is possible from a multiplication factor of 2 to >100. The resulting maximum SMSR is 41 dB when multiplied by a factor of two. We further characterize the noise properties of the multiplied signal in terms of phase noise and relative intensity noise. The resulting absolute rms timing jitter of the multiplied signal is in the range of 20 fs to 60 fs (10 kHz - 1 MHz) for different multiplication factors. With its high tunability, simple and robust all-fibre implementation, and low excess noise, the demonstrated RRM system may find diverse applications in microwave photonics, optical communications, photonic analogue-to-digital conversion, and clock distribution networks.Comment: 25 pages, 9 figure

    설교를 통한 교회 치유와 성장

    Get PDF

    Diagnosis in a Preclinical Model of Bladder Pain Syndrome Using a Au/ZnO Nanorod-based SERS Substrate

    Get PDF
    To evaluate the feasibility of ZnO nanorod-based surface enhanced Raman scattering (SERS) diagnostics for disease models, particularly for interstitial cystitis/bladder pain syndrome (IC/BPS), ZnO-based SERS sensing chips were developed and applied to an animal disease model. ZnO nanorods were grown to form nano-sized porous structures and coated with gold to facilitate size-selective biomarker detection. Raman spectra were acquired on a surface enhanced Raman substrate from the urine in a rat model of IC/BPS and analyzed using a statistical analysis method called principal component analysis (PCA). The nanorods grown after the ZnO seed deposition were 30 to 50 nm in diameter and 500 to 600 nm in length. A volume of gold corresponding to a thin film thickness of 100 nm was deposited on the grown nanorod structure. Raman spectroscopic signals were measured in the scattered region for nanometer biomarker detection to indicate IC/BPS. The Raman peaks for the control group and IC/BPS group are observed at 641, 683, 723, 873, 1002, 1030, and 1355 cm(-1),which corresponded to various bonding types and compounds. The PCA results are plotted in 2D and 3D. The Raman signals and statistical analyses obtained from the nano-sized biomarkers of intractable inflammatory diseases demonstrate the possibility of an early diagnosis

    Socratic Planner: Inquiry-Based Zero-Shot Planning for Embodied Instruction Following

    Full text link
    Embodied Instruction Following (EIF) is the task of executing natural language instructions by navigating and interacting with objects in 3D environments. One of the primary challenges in EIF is compositional task planning, which is often addressed with supervised or in-context learning with labeled data. To this end, we introduce the Socratic Planner, the first zero-shot planning method that infers without the need for any training data. Socratic Planner first decomposes the instructions into substructural information of the task through self-questioning and answering, translating it into a high-level plan, i.e., a sequence of subgoals. Subgoals are executed sequentially, with our visually grounded re-planning mechanism adjusting plans dynamically through a dense visual feedback. We also introduce an evaluation metric of high-level plans, RelaxedHLP, for a more comprehensive evaluation. Experiments demonstrate the effectiveness of the Socratic Planner, achieving competitive performance on both zero-shot and few-shot task planning in the ALFRED benchmark, particularly excelling in tasks requiring higher-dimensional inference. Additionally, a precise adjustments in the plan were achieved by incorporating environmental visual information.Comment: 14 pages, 6 figure

    Dancing in time: feasibility and acceptability of a contemporary dance programme to modify risk factors for falling in community dwelling older adults

    Get PDF
    Background: Falls are a common cause of injury in older adults, with the prevention of falls being a priority for public health departments around the world. This study investigated the feasibility, and impact of an 8 week contemporary dance programme on modifiable physical (physical activity status, mobility, sedentary behaviour patterns) and psychosocial (depressive state, fear of falling) risk factors for falls. Methods: An uncontrolled ‘pre-post’ intervention design was used. Three groups of older (60 yrs.+) adults were recruited from local community groups to participate in a 3 separate, 8 week dance programmes. Each programme comprised two, 90 min dance classes per week. Quantitative measures of physical activity, sedentary behaviour, depression, mobility and fear of falling were measured at baseline (T1) and after 8 weeks of dance (T2). Weekly attendance was noted, and post-study qualitative work was conducted with participants in 3 separate focus groups. A combined thematic analysis of these data was conducted. Results: Of the 38 (Mean Age = 77.3 ± 8.4 yrs., 37 females) who attended the dance sessions, 22 (21 females; 1 male; mean age = 74.8, ±8.44) consented to be part of the study. Mean attendance was 14.6 (±2.6) sessions, and mean adherence was 84.3% (±17). Significant increases in moderate and vigorous physical activity were noted, with a significant decrease in sitting time over the weekdays (p < 0.05). Statistically significant decreases in the mean Geriatric Depression Scale (p < 0.05) and fear of falling (p < 0.005) score were noted, and the time taken to complete the TUG test decreased significantly from 10.1 s to 7.7 s over the 8 weeks (p < 0.005). Themes from the focus groups included the dance programme as a means of being active, health Benefits, and dance-related barriers and facilitators. Conclusions: The recruitment of older adults, good adherence and favourability across all three sites indicate that a dance programme is feasible as an intervention, but this may be limited to females only. Contemporary dance has the potential to positively affect the physical activity, sitting behaviour, falls related efficacy, mobility and incidence of depression in older females which could reduce their incidence of falls. An adequately powered study with control groups are required to test this intervention further

    Failure Diagnosis System for a Ball-Screw by Using Vibration Signals

    Get PDF
    Recently, in order to reduce high maintenance costs and to increase operating ratio in manufacturing systems, condition-based maintenance (CBM) has been developed. CBM is carried out with indicators, which show equipment’s faults and performance deterioration. In this study, indicator signal acquisition and condition monitoring are applied to a ball-screw-driven stage. Although ball-screw is a typical linearly reciprocating part and is widely used in industry, it has not gained attention to be diagnosed compared to rotating parts such as motor, pump, and bearing. First, the vibration-based monitoring method, which uses vibration signal to monitor the condition of a machine, is proposed. Second, Wavelet transform is used to analyze the defect signals in time-frequency domain. Finally, the failure diagnosis system is developed using the analysis, and then its performance is evaluated. Using the system, we estimated the severity of failure and detect the defect position. The low defect frequency (≈58.7 Hz) is spread all over the time in the Wavelet-filtered signal with low frequency range. Its amplitude reflects the progress of defect. The defect position was found in the signal with high frequency range (768~1,536 Hz). It was detected from the interval between abrupt changes of signal

    Ultrasensitive, high-dynamic-range and broadband strain sensing by time-of-flight detection with femtosecond-laser frequency combs

    Full text link
    Ultrahigh-resolution optical strain sensors provide powerful tools in various scientific and engineering fields, ranging from long-baseline interferometers to civil and aerospace industries. Here we demonstrate an ultrahigh-resolution fibre strain sensing method by directly detecting the time-of-flight (TOF) change of the optical pulse train generated from a free-running passively mode-locked laser (MLL) frequency comb. We achieved a local strain resolution of 18 p{\epsilon}/Hz1/2 and 1.9 p{\epsilon}/Hz1/2 at 1 Hz and 3 kHz, respectively, with largedynamic range of >154 dB at 3 kHz. For remote-point sensing at 1-km distance, 80 p{\epsilon}/Hz1/2 (at 1 Hz) and 2.2 p{\epsilon}/Hz1/2 (at 3 kHz) resolution is demonstrated. While attaining both ultrahigh resolution and large dynamic range, the demonstrated method can be readily extended for multiple-point sensing as well by taking advantage of the broad optical comb spectra. These advantages may allow various applications of this sensor in geophysical science, structural health monitoring, and underwater science.Comment: 20 pages, 4 figure

    Challenges in overcoming advanced-stage or relapsed refractory extranodal NK/T-cell lymphoma: meta-analysis of individual patient data

    Get PDF
    IntroductionExtranodal NK/T-cell lymphoma (ENKTCL), a non-Hodgkin lymphoma, is known for its destructive local impact on nasal structures and systemic induction of inflammatory cytokines. Concurrent treatment with radiation and nonanthracycline- based chemotherapy has improved survival rates in patients with localized disease stages. However, survival outcomes vary significantly in advanced-stage and relapsed or refractory (R/R) cases.MethodsTherefore, we conducted a meta-analysis using random effects models to assess prognostic factors in advanced or R/R ENKTCL, employing a digital extractor on Kaplan–Meier graphs owing to the scarcity of published prospective trials for these patients.ResultsWe observed that patients with advanced ENKTCL treated with Lasparaginase had a median progression-free survival (PFS) of 14.3 months and an overall survival (OS) of 19 months. In R/R ENKTCL, PFS and OS were 11.7 and 15.6 months, respectively. Additionally, OS outcomes in advanced-stage ENKTCL were better in the asparaginase group than that in the non-asparaginase group, with PEG-asparaginase showing superior results compared with that using Lasparaginase. Epstein–Barr Virus (EBV)-DNA positivity in the bloodstream prior to treatment was associated with poor outcomes in advanced-stage ENKTCL, and similar trends were observed in patients with R/R ENKTCL and post-treatment EBV viremia.DiscussionCollectively, these findings suggest that chemotherapy with Lasparaginase or PEG-asparaginase can enhance survival in advanced or R/R ENKTCL. However, future strategies must be developed to effectively suppress EBV viremia and achieve a deep response toward tumor eradication

    The feasibility study of non-invasive fetal trisomy 18 and 21 detection with semiconductor sequencing platform

    Get PDF
    Objective: Recent non-invasive prenatal testing (NIPT) technologies are based on next-generation sequencing (NGS). NGS allows rapid and effective clinical diagnoses to be determined with two common sequencing systems: Illumina and Ion Torrent platforms. The majority of NIPT technology is associated with Illumina platform. We investigated whether fetal trisomy 18 and 21 were sensitively and specifically detectable by semiconductor sequencer: Ion Proton. Methods: From March 2012 to October 2013, we enrolled 155 pregnant women with fetuses who were diagnosed as high risk of fetal defects at Xiamen Maternal &amp; Child Health Care Hospital (Xiamen, Fujian, China). Adapter-ligated DNA libraries were analyzed by the Ion Proton??? System (Life Technologies, Grand Island, NY, USA) with an average 0.3 ?? sequencing coverage per nucleotide. Average total raw reads per sample was 6.5 million and mean rate of uniquely mapped reads was 59.0%. The results of this study were derived from BWA mapping. Z-score was used for fetal trisomy 18 and 21 detection. Results: Interactive dot diagrams showed the minimal z-score values to discriminate negative versus positive cases of fetal trisomy 18 and 21. For fetal trisomy 18, the minimal z-score value of 2.459 showed 100% positive predictive and negative predictive values. The minimal z-score of 2.566 was used to classify negative versus positive cases of fetal trisomy 21. Conclusion: These results provide the evidence that fetal trisomy 18 and 21 detection can be performed with semiconductor sequencer. Our data also suggest that a prospective study should be performed with a larger cohort of clinically diverse obstetrics patients.open2
    corecore