13,425 research outputs found
Hydrogen-like Atoms from Ultrarelativistic Nuclear Collisions
The number of hydrogen-like atoms produced when heavy nuclei collide is
estimated for central collisions at the Relativistic Heavy Ion Collider using
the sudden approximation of Baym et al. As first suggested by Schwartz, a
simultaneous measurement of the hydrogen and hadron spectra will allow an
inference of the electron or muon spectra at low momentum where a direct
experimental measurement is not feasible.Comment: 6 pages, 4 figure
Friction in inflaton equations of motion
The possibility of a friction term in the equation of motion for a scalar
field is investigated in non-equilibrium field theory. The results obtained
differ greatly from existing estimates based on linear response theory, and
suggest that dissipation is not well represented by a term of the form
.Comment: 4 pages, 2 figures, RevTex4. An obscurity in the original version has
been clarifie
Nucleus-Nucleus Bremsstrahlung from Ultrarelativistic Collisions
The bremsstrahlung produced when heavy nuclei collide is estimated for
central collisions at the Relativistic Heavy Ion Collider. Soft photons can be
used to infer the rapidity distribution of the outgoing charge. An experimental
design is outlined.Comment: 12 pages, 7 figures, uses revte
Neutron and muon-induced background studies for the AMoRE double-beta decay experiment
AMoRE (Advanced Mo-based Rare process Experiment) is an experiment to search
a neutrinoless double-beta decay of Mo in molybdate crystals. The
neutron and muon-induced backgrounds are crucial to obtain the zero-background
level (< counts/(keVkgyr)) for the AMoRE-II experiment,
which is the second phase of the AMoRE project, planned to run at YEMI
underground laboratory. To evaluate the effects of neutron and muon-induced
backgrounds, we performed Geant4 Monte Carlo simulations and studied a
shielding strategy for the AMORE-II experiment. Neutron-induced backgrounds
were also included in the study. In this paper, we estimated the background
level in the presence of possible shielding structures, which meet the
background requirement for the AMoRE-II experiment
Balance Functions, Correlations, Charge Fluctuations and Interferometry
Connections between charge balance functions, charge fluctuations and
correlations are presented. It is shown that charge fluctuations can be
directly expressed in terms of a balance functions under certain assumptions.
The distortion of charge balance functions due to experimental acceptance is
discussed and the effects of identical boson interference is illustrated with a
simple model.Comment: 1 eps figure included. 5 pages in revtex
Particle number fluctuations in nuclear collisions within excluded volume hadron gas model
The multiplicity fluctuations are studied in the van der Waals excluded
volume hadron-resonance gas model. The calculations are done in the grand
canonical ensemble within the Boltzmann statistics approximation. The scaled
variances for positive, negative and all charged hadrons are calculated along
the chemical freeze-out line of nucleus-nucleus collisions at different
collision energies. The multiplicity fluctuations are found to be suppressed in
the van der Waals gas. The numerical calculations are presented for two values
of hard-core hadron radius, fm and 0.5 fm, as well as for the upper
limit of the excluded volume suppression effects.Comment: 19 pages, 4 figure
Quark Number Fluctuations in a Chiral Model at Finite Baryon Chemical Potential
We discuss the net quark and isovector fluctuations as well as off-diagonal
quark flavor susceptibilities along the chiral phase transition line in the
Nambu--Jona-Lasinio (NJL) model. The model is formulated at non-zero quark and
isospin chemical potentials with non-vanishing vector couplings in the
iso-scalar and iso-vector channels. We study the influence of the quark
chemical potential on the quark flavour susceptibilities in detail and the
dependence of the results on model parameters as well as on the quark mass. The
NJL model findings are compared with recent lattice results obtained in
two--flavor QCD at finite chemical potential. On a qualitative level, the NJL
model provides a consistent description of the dependence of quark number
fluctuations on temperature and baryon chemical potential. The phase diagram
and the position of the tricritical point in the NJL model are also discussed
for different parameter sets.Comment: 33 pages, 11 figures; final version accepted for publication in Phys.
Rev.
- …