3 research outputs found

    Development of Volumetric Acceptance and Percent Within Limits (PWL) and Criteria for Stone Metrix Asphalt (SMA) Mixtures in Indiana

    Get PDF
    SMA is to be designed based on SMA volumetric properties in terms of air voids content (Va), voids in the mineral aggregate (VMA), and adequate stone-on-stone contact. For construction quality assurance (QA) purposes, INDOT currently accepts SMAs based on aggregate gradation and asphalt binder content. Thus, there is a discrepancy between SMA design criteria and construction acceptance. To better align design and construction, it is necessary to consider SMA volumetric properties in the use of QA. For HMA mixtures, INDOT has already transitioned from volumetric QA acceptance procedures to PWL. Today, SMA still uses adjustment points not based on robust statistics for QA acceptance. SMA QA samples and QA data sets were collected from projects constructed in 2019 and tested in the laboratory. The Hamburg Wheel Track Test (HWTT) was performed on the 2019 QA samples to evaluate SMA rutting performance. Additionally, the PWL for HMA was applied to the 2019 SMA QA data to see if the HMA PWL method would work for SMA. Possible SMA QA measurements were compared to past QA data and HMA QA measurements. In addition, Voids in the Coarse Aggregate (VCA) was evaluated as a possible SMA QA measurement. Finally, using the suitable QA measurements for SMA, a PWL parameter study was performed to find PWL that provides a Pay Factor (PF) equivalent to the current SMA Adjustment Point (AP) PF. The current SMA QA measurements (binder content, gradation, and density) are recommended for Indiana\u27s SMA PWL. Based on the results of applying PWL to SMA QA data for the last four years, SMA PWL specification limits are recommended. Also, the SMA PF equations are suggested to get the SMA PWL to have PF equivalent to the current AP PF

    Structural Evaluation of Full-Depth Flexible Pavement Using APT

    Get PDF
    The fundamentals of rutting behavior for thin full-depth flexible pavements (i.e., asphalt thickness less than 12 inches) are investigated in this study. The scope incorporates an experimental study using full-scale Accelerated Pavement Tests (APTs) to monitor the evolution of each pavement structural layer\u27s transverse profiles. The findings were then employed to verify the local rutting model coefficients used in the current pavement design method, the Mechanistic-Empirical Pavement Design Guide (MEPDG). Four APT sections were constructed using two thin typical pavement structures (seven-and ten-inches thick) and two types of surface course material (dense-graded and SMA). A mid-depth rut monitoring and automated laser profile systems were designed to reconstruct the transverse profiles at each pavement layer interface throughout the process of accelerated pavement deterioration that is produced during the APT. The contributions of each pavement structural layer to rutting and the evolution of layer deformation were derived. This study found that the permanent deformation within full-depth asphalt concrete significantly depends upon the pavement thickness. However, once the pavement reaches sufficient thickness (more than 12.5 inches), increasing the thickness does not significantly affect the permanent deformation. Additionally, for thin full-depth asphalt pavements with a dense-graded Hot Mix Asphalt (HMA) surface course, most pavement rutting is caused by the deformation of the asphalt concrete, with about half the rutting amount observed within the top four inches of the pavement layers. However, for thin full-depth asphalt pavements with an SMA surface course, most pavement rutting comes from the closet sublayer to the surface, i.e., the intermediate layer. The accuracy of the MEPDG’s prediction models for thin full-depth asphalt pavement was evaluated using some statistical parameters, including bias, the sum of squared error, and the standard error of estimates between the predicted and actual measurements. Based on the statistical analysis (at the 95% confidence level), no significant difference was found between the version 2.3-predicted and measured rutting of total asphalt concrete layer and subgrade for thick and thin pavements

    Development of Volumetric Acceptance and Percent Within Limits (PWL) and Criteria for Stone Metrix Asphalt (SMA) Mixtures in Indiana

    Get PDF
    SPR-4325SMA is designed based on SMA volumetric properties in terms of air voids content (Va), voids in the mineral aggregate (VMA), and adequate stone-on-stone contact. For construction quality assurance (QA) purposes, INDOT currently accepts SMAs based on aggregate gradation and asphalt binder content. Thus, there is a discrepancy between SMA design criteria and construction acceptance. To better align design and construction, it is necessary to consider SMA volumetric properties in the use of QA. For HMA mixtures, INDOT has already transitioned from volumetric QA acceptance procedures to PWL. Today, SMA still uses adjustment points, which are not based on robust statistics, for QA acceptance
    corecore