152 research outputs found

    Enzymatic hydrolysis of biologically pretreated sorghum husk for bioethanol production

    Get PDF
    Biological pretreatment of lignocellulosic biomass is considered to be energy-efficient and cost-effective. In the present study, sorghum husk was biologically pretreated with a white-rot fungus Phanerochaete chrysosporium (MTCC 4955) under submerged static condition. Ligninolytic enzymes like lignin peroxidase (0.843 U/mL) and manganese peroxidase (0.389 U/mL) played an important role in the biological pretreatment of sorghum husk. Activities of different hydrolytic enzymes such as endoglucanase (57.25 U/mL), exoglucanase (4.76 U/mL), filter paperase (0.580 U/mL), glucoamylase (153.38 U/mL), and xylanase (88.14 U/mL) during biological pretreatment of sorghum husk by P. chrysosporium were evaluated. Enzymatic hydrolysis of untreated sorghum husk and biologically pretreated sorghum husk produced 20.07 and 103.0 mg/g reducing sugars, respectively. This result showed a significant increase in reducing sugar production in the biologically pretreated sorghum husk as compared to its untreated counterpart. Biologically pretreated sorghum husk hydrolysate was further fermented for 48 h using Saccharomyces cerevisiae (KCTC 7296), Pachysolen tannophilus (MTCC 1077), and their co-culture resulting in ethanol yields of 2.113, 1.095, and 2.348%, respectively. The surface characteristics of the substrate were evaluated after the delignification and hydrolysis, using FTIR, XRD, and SEM, confirming the effectiveness of the biological pretreatment process

    Occurrence and Characterization of Paraffin Wax Formed in Developing Wells and Pipelines

    Get PDF
    Deposition and precipitation of paraffin wax in pipelines are major problems in the production, transfer, storage, and processing of crude oil. To prevent complete clogging, it is necessary to minimize and remove deposited wax in pipelines and tubing. Significant research has been done addressing the mechanisms of wax formation and its composition. In this review, the status of research and perspectives on the occurrence and characterization of the paraffin wax that forms in crude oil developing wells and pipelines has been critically reviewed. Several approaches for detecting paraffin wax and managing wax formation damage during oil recovery were discussed. This review also highlighted the effects of temperature and crude oil type on wax formation. Document type: Articl

    Manipulating nutrient composition of microalgal growth media to improve biomass yield and lipid content of Micractinium pusillum

    Get PDF
    Biodiesel production from microalgae depends on the algal biomass and lipid content. Both biomass production and lipid accumulation are limited by several factors in which nutrients play a key role. We investigated the influences of micronutrients on biomass, and lipid content of Micractinium pusillum GU732425 cultivated in bold basal media (BBM). The average dry biomass of microalgal strain in control medium reached 0.34 ± 0.01 g /L, while doubling (2X) the levels of Mn and Cu concentration increased the dry biomass to 0.38 ± 0.01 and 0.37 ± 0.02 g /L, respectively. M. pusillum cultivated in control medium had a biomass of 0.82 ± 0.05 g/L and a lipid productivity of 0.33 ± 0.02 g/L after 17 day cultivation. The alga cultivated in BBM with 4X Mn or 4X Cu produced more biomass (1.25 ± 0.01 or 1.28 ± 0.04 g dw/L) and lipid productivity (0.45±0.04 or 0.47±0.05 g/L), respectively. M. pusillum cultivated in different growth media had fatty acid compositions mainly comprising linoleic (49-54%), palmitic (24-29%), linolenic (16-22%), and oleic acids (2-5%). These results can be used to maximize the production of microalgal biomass and lipids in optimally designed  photobioreactors.Key words: Micractinium pusillum, biomass, lipid production, media composition, fatty acids, trace metals

    Systematic assessment of visible-light-driven microspherical v2o5 photocatalyst for the removal of hazardous organosulfur compounds from diesel

    Get PDF
    The organosulfur compounds present in liquid fuels are hazardous for health, asset, and the environment. The photocatalytic desulfurization technique works at ordinary conditions and removes the requirement of hydrogen, as it is an expensive gas, highly explosive, with a broader flammability range and is declared the most hazardous gas within a petroleum refinery, with respect to flammability. The projected work is based on the synthesis of V2O5 microspheres for photocatalytic oxidation for the straight-run diesel (SRD) and diesel oil blend (DOB). The physicochemical properties of V2O5 microspheres were examined by FT-IR, Raman, UV-vis DRS, SEM, and Photoluminescence evaluations. The as-synthesized photocatalyst presented a trivial unit size, a narrow bandgap, appropriate light-capturing capability, and sufficient active sites. The desulfurization study discovered that the anticipated technique is substantial in desulfurizing DOB up to 37% in 180 min using methanol as an interfacing agent. Furthermore, the outcome of employing a range of polar interfacing solvents was examined, and the 2-ethoxyethanol elevated the desulfurization degree up to 51.3%. However, the anticipated technology is constrained for its application in sulfur removal from SRD. Additionally, the mechanism for a photocatalytic reaction was seen in strong agreement with pseudo-first-order kinetics. The investigated photocatalyst exhibited a compromised recyclability and regeneration tendency

    Electricity production by the application of a low voltage DC-DC boost converter to a continuously operating flat-plate microbial fuel cell

    Get PDF
    An ultra-low voltage customized DC-DC booster circuit was developed using a LTC3108 converter, and used continuously on a flat-plate microbial fuel cell (FPM) system. The boost converter successfully stepped up the microbial fuel cell (MFC) voltage from ~0.5 V to 3.3 and 5.0 V of outputs. The designed circuit and system displayed the dynamic variations of the source FPM as well as the output voltage through the designed three connection points within the booster circuit. The source MFC voltage was interrelated with the booster circuit and its performance, and it adapted to the set points of the booster dynamically. The maximum output power density of the MFC with the DC-DC booster circuit was 8.16 W/m3 compared to the maximum source FPM input power of 14.27 W/m3 at 100 Ω, showing a conversion efficiency of 26–57%, but with a 10-fold higher output than that of the source voltage. The combined LTC3108 with FPM supplied power for electronic devices using synthetic and real domestic wastewater. This report presents a promising strategy for utilizing the electrical energy produced from MFCs, and expands the applicability of bioelectrochemical systems with an improved energy efficiency of the present wastewater treatment system

    Psychobiotics and fecal microbial transplantation for autism and attention-deficit/hyperactivity disorder: microbiome modulation and therapeutic mechanisms

    Get PDF
    Dysbiosis of the gut microbiome is thought to be the developmental origins of the host’s health and disease through the microbiota-gut-brain (MGB) axis: such as immune-mediated, metabolic, neurodegenerative, and neurodevelopmental diseases. Autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD) are common neurodevelopmental disorders, and growing evidence indicates the contribution of the gut microbiome changes and imbalances to these conditions, pointing to the importance of considering the MGB axis in their treatment. This review summarizes the general knowledge of gut microbial colonization and development in early life and its role in the pathogenesis of ASD/ADHD, highlighting a promising therapeutic approach for ASD/ADHD through modulation of the gut microbiome using psychobiotics (probiotics that positively affect neurological function and can be applied for the treatment of psychiatric diseases) and fecal microbial transplantation (FMT)

    Copper extraction from oxide ore of Almalyk mine by H2SO4 in simulated heap leaching : effect of particle size and acid concentration

    Get PDF
    ABSTRACT: In this investigation, a laboratory-scale study to extract copper (Cu) from its oxide ore (0.425–11.2 mm particle size) was conducted using varied sulfuric acid (H2SO4) concentrations (0.05–0.5 M) as a lixiviant. Through a physicochemical and mineralogical analysis of real field ore samples from the Almalyk mine heap site (Tashkent, Uzbekistan), malachite was identified as a Cu-bearing mineral. Extraction rates were analyzed according to the ore particle size and acid concentration. The Cu extraction with the smallest particle size (in 24 h) varied between 76.7% and 94.26% at varied H2SO4 concentrations (0.05–0.5 M). Almost half (50%) of Cu was extracted from the ore within 4 and 72 h of contact time for 0.425–2 mm and 5.6–11.2 mm particle sizes, respectively, using 0.15 M H2SO4. Weeklong leaching experiments with 0.5 M H2SO4 revealed a higher copper extraction rate (≥73%) from coarse ore particles (5.6–11.2 mm). Along with the copper extraction, iron (29.6 wt%), aluminum (70.2 wt%), magnesium (85.4 wt%), and calcium (44.4 wt%) were also leached out considerably through the dissolution of silicate and carbonate gangue minerals. In this study, an 80.0–94.26% copper extraction rate with reduced acid consumption (20%) proved to be a cost-effective approach

    Use of biogenic silver nanoparticles on the cathode to improve bioelectricity production in microbial fuel cells

    Get PDF
    To date, research on microbial fuel cells (MFCs) has. focused on the production of cost-effective, high-performance electrodes and catalysts. The present study focuses on the synthesis of silver nanoparticles (AgNPs) by Pseudomonas sp. and evaluates their role as an oxygen reduction reaction (ORR) catalyst in an MFC. Biogenic AgNPs were synthesized from Pseudomonas aeruginosa via facile hydrothermal synthesis. The physiochemical characterization of the biogenic AgNPs was conducted via scanning electron microscopy (SEM), X-ray diffraction (XRD), and UV-visible spectrum analysis. SEM micrographs showed a spherical cluster of AgNPs of 20–100 nm in size. The oxygen reduction reaction (ORR) ability of the biogenic AgNPs was studied using cyclic voltammetry (CV). The oxygen reduction peaks were observed at 0.43 V, 0.42 V, 0.410 V, and 0.39 V. Different concentrations of biogenic AgNPs (0.25–1.0 mg/cm2) were used as ORR catalysts at the cathode in the MFC. A steady increase in the power production was observed with increasing concentrations of biogenic AgNPs. Biogenic AgNPs loaded with 1.0 mg/cm2 exhibited the highest power density (PDmax) of 4.70 W/m3, which was approximately 26.30% higher than the PDmax of the sample loaded with 0.25 mg/cm2. The highest COD removal and Coulombic efficiency (CE) were also observed in biogenic AgNPs loaded with 1.0 mg/cm2 (83.8% and 11.7%, respectively). However, the opposite trend was observed in the internal resistance of the MFC. The lowest internal resistance was observed in a 1.0 mg/cm2 loading (87 Ω), which is attributed to the high oxygen reduction kinetics at the surface of the cathode by the biogenic AgNPs. The results of this study conclude that biogenic AgNPs are a cost-effective, high-performance ORR catalyst in MFCs

    Emerging trends in the recovery of ferrospheres and plerospheres from coal fly ash waste and their emerging applications in environmental cleanup

    Get PDF
    Coal fly ash (CFA) is a major global problem due to its production in huge volumes. Fly ash has numerous toxic heavy metals; thus, it is considered a hazardous material. However, it also has several value-added minerals like ferrous, alumina, and silica along with other minerals. Fly ash also has several natural micro- to nano-structured materials; for instance, spherical ferrous-rich particles, cenospheres, plerospheres, carbon nanomaterials, and unburned soot. These micron- to nano-sized particles are formed from the molten slag of coal, followed by condensation. Among these particles, plerospheres which are hollow spherical particles, and ferrospheres which are ferrous-rich particles, have potential applications in the environmental cleanup, research, catalytic industries, and glass and ceramics industries. Additionally, these particles could be further surface-functionalized or purified for other applications. Moreover, these particles are widely explored for their potential in the army and other defense systems like lightweight materials and sensing The recovery of such particles from waste fly ash will make the process and remediation technology economically and environmentally friendly. The current review focuses on the various structural and elemental properties of ferrospheres and plerospheres from fly ash. This review also focuses on the emerging applications of both naturally formed materials in CFA
    • …
    corecore