50 research outputs found
Techniques in Analytic Lamb Shift Calculations
Quantum electrodynamics has been the first theory to emerge from the ideas of
regularization and renormalization, and the coupling of the fermions to the
virtual excitations of the electromagnetic field. Today, bound-state quantum
electrodynamics provides us with accurate theoretical predictions for the
transition energies relevant to simple atomic systems, and steady theoretical
progress relies on advances in calculational techniques, as well as numerical
algorithms. In this brief review, we discuss one particular aspect connected
with the recent progress: the evaluation of relativistic corrections to the
one-loop bound-state self-energy in a hydrogenlike ion of low nuclear charge
number, for excited non-S states, up to the order of alpha (Zalpha)^6 in units
of the electron mass. A few details of calculations formerly reported in the
literature are discussed, and results for 6F, 7F, 6G and 7G states are given.Comment: 16 pages, LaTe
Two-Loop Effects and Current Status of the 4He+ Lamb Shift
We report on recent progress in the treatment of two-loop binding corrections
to the Lamb shift, with a special emphasis on S and P states. We use these and
other results in order to infer an updated theoretical value of the Lamb shift
in 4He+.Comment: 11 pages, nrc1 style; paper presented at PSAS (2006), Venic
Toward high-precision values of the self energy of non-S states in hydrogen and hydrogen-like ions
The method and status of a study to provide numerical, high-precision values
of the self-energy level shift in hydrogen and hydrogen-like ions is described.
Graphs of the self energy in hydrogen-like ions with nuclear charge number
between 20 and 110 are given for a large number of states. The self-energy is
the largest contribution of Quantum Electrodynamics (QED) to the energy levels
of these atomic systems. These results greatly expand the number of levels for
which the self energy is known with a controlled and high precision.
Applications include the adjustment of the Rydberg constant and atomic
calculations that take into account QED effects.Comment: Minor changes since previous versio
Distributional Borel Summability for Vacuum Polarization by an External Electric Field
It is proved that the divergent perturbation expansion for the vacuum
polarization by an external constant electric field in the pair production
sector is Borel summable in the distributional sense.Comment: 14 page
Relativistic and Radiative Energy Shifts for Rydberg States
We investigate relativistic and quantum electrodynamic effects for
highly-excited bound states in hydrogenlike systems (Rydberg states). In
particular, hydrogenic one-loop Bethe logarithms are calculated for all
circular states (l = n-1) in the range 20 <= n <= 60 and successfully compared
to an existing asymptotic expansion for large principal quantum number n. We
provide accurate expansions of the Bethe logarithm for large values of n, for
S, P and circular Rydberg states. These three expansions are expected to give
any Bethe logarithms for principal quantum number n > 20 to an accuracy of five
to seven decimal digits, within the specified manifolds of atomic states.
Within the numerical accuracy, the results constitute unified, general formulas
for quantum electrodynamic corrections whose validity is not restricted to a
single atomic state. The results are relevant for accurate predictions of
radiative shifts of Rydberg states and for the description of the recently
investigated laser-dressed Lamb shift, which is observable in a strong
coherent-wave light field.Comment: 8 pages; RevTeX
Structure, Time Propagation and Dissipative Terms for Resonances
For odd anharmonic oscillators, it is well known that complex scaling can be
used to determine resonance energy eigenvalues and the corresponding
eigenvectors in complex rotated space. We briefly review and discuss various
methods for the numerical determination of such eigenvalues, and also discuss
the connection to the case of purely imaginary coupling, which is PT-symmetric.
Moreover, we show that a suitable generalization of the complex scaling method
leads to an algorithm for the time propagation of wave packets in potentials
which give rise to unstable resonances. This leads to a certain unification of
the structure and the dynamics. Our time propagation results agree with known
quantum dynamics solvers and allow for a natural incorporation of structural
perturbations (e.g., due to dissipative processes) into the quantum dynamics.Comment: 14 pages; LaTeX; minor change
Finite nuclear size and Lamb shift of p-wave atomic states
We consider corrections to the Lamb shift of p-wave atomic states due to the
finite nuclear size (FNS). In other words, these are radiative corrections to
the atomic isotop shift related to FNS. It is shown that the structure of the
corrections is qualitatively different from that for s-wave states. The
perturbation theory expansion for the relative correction for a -state
starts from -term, while for -states it starts
from term. Here is the fine structure constant and is
the nuclear charge. In the present work we calculate the -terms for
-states, the result for -state reads
. Even more interesting are
-states. In this case the ``correction'' is by several orders of
magnitude larger than the ``leading'' FNS shift.Comment: 4 pages, 2 figure
Mathematical Properties of a New Levin-Type Sequence Transformation Introduced by \v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la. I. Algebraic Theory
\v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la [J. Math. Phys. \textbf{44}, 962
- 968 (2003)] introduced in connection with the summation of the divergent
perturbation expansion of the hydrogen atom in an external magnetic field a new
sequence transformation which uses as input data not only the elements of a
sequence of partial sums, but also explicit estimates
for the truncation errors. The explicit
incorporation of the information contained in the truncation error estimates
makes this and related transformations potentially much more powerful than for
instance Pad\'{e} approximants. Special cases of the new transformation are
sequence transformations introduced by Levin [Int. J. Comput. Math. B
\textbf{3}, 371 - 388 (1973)] and Weniger [Comput. Phys. Rep. \textbf{10}, 189
- 371 (1989), Sections 7 -9; Numer. Algor. \textbf{3}, 477 - 486 (1992)] and
also a variant of Richardson extrapolation [Phil. Trans. Roy. Soc. London A
\textbf{226}, 299 - 349 (1927)]. The algebraic theory of these transformations
- explicit expressions, recurrence formulas, explicit expressions in the case
of special remainder estimates, and asymptotic order estimates satisfied by
rational approximants to power series - is formulated in terms of hitherto
unknown mathematical properties of the new transformation introduced by
\v{C}\'{\i}\v{z}ek, Zamastil, and Sk\'{a}la. This leads to a considerable
formal simplification and unification.Comment: 41 + ii pages, LaTeX2e, 0 figures. Submitted to Journal of
Mathematical Physic
Two-photon excitation dynamics in bound two-body Coulomb systems including ac Stark shift and ionization
One of the dominant systematic effects that shift resonance lines in high-precision measurements of twophoton transitions is the dynamic (ac) Stark shift. For suitable laser frequencies, the ac Stark shift acquires an imaginary part which corresponds to the rate of resonant one-photon ionization of electrons into a continuum state. At the current level of spectroscopic accuracy, the underlying time-dependent quantum dynamics governing the atomic two-photon excitation process must be well understood, and related considerations are the subject of the present paper. In order to illustrate the basic mechanisms in the transient regime, we investigate an analytically solvable model scenario for the population dynamics in the density matrix formalism and describe in detail how to generalize the corresponding equations of motion for individual experimental use. We also calculate the dynamic Stark shift for two-photon S-S and S-D transitions in bound two-body Coulomb systems and the corresponding two-photon transition matrix elements. In particular, we investigate transitions for which the 1S ground state or alternatively the metastable 2S state acts as the lower-energy state, and for which states with n </= 20 represent the upper states. Relativistic and radiative corrections to the excitation dynamics, and the corresponding limitations to the accuracy of the measurements, are briefly discussed. Our considerations suggest the general feasibility of a detection mechanism, offering high quantum efficiency, based on two-step three-photon resonant ionization spectroscopy, for large classes of experimentally relevant two-photon transitions in two-body Coulomb systems.Peer reviewedPhysic
Tachyonic Field Theory and Neutrino Mass Running
In this paper three things are done. (i) We investigate the analogues of
Cerenkov radiation for the decay of a superluminal neutrino and calculate the
Cerenkov angles for the emission of a photon through a W loop, and for a
collinear electron-positron pair, assuming the tachyonic dispersion relation
for the superluminal neutrino. The decay rate of a freely propagating neutrino
is found to depend on the shape of the assumed dispersion relation, and is
found to decrease with decreasing tachyonic mass of the neutrino. (ii) We
discuss a few properties of the tachyonic Dirac equation (symmetries and
plane-wave solutions), which may be relevant for the description of
superluminal neutrinos seen by the OPERA experiment, and discuss the
calculation of the tachyonic propagator. (iii) In the absence of a commonly
accepted tachyonic field theory, and in view of an apparent "running" of the
observed neutrino mass with the energy, we write down a model Lagrangian, which
describes a Yukawa-type interaction of a neutrino coupling to a scalar
background field via a scalar-minus-pseudoscalar interaction. This constitutes
an extension of the standard model. If the interaction is strong, then it leads
to a substantial renormalization-group "running" of the neutrino mass and could
potentially explain the experimental observations.Comment: 13 pages; RevTeX; to appear in Cent. Eur. J. Phy