1,191 research outputs found

    In-plane magnetic reorientation in coupled ferro- and antiferromagnetic thin films

    Full text link
    By studying coupled ferro- (FM) and antiferromagnetic (AFM) thin film systems, we obtain an in-plane magnetic reorientation as a function of temperature and FM film thickness. The interlayer exchange coupling causes a uniaxial anisotropy, which may compete with the intrinsic anisotropy of the FM film. Depending on the latter the total in-plane anisotropy of the FM film is either enhanced or reduced. Eventually a change of sign occurs, resulting in an in-plane magnetic reorientation between a collinear and an orthogonal magnetic arrangement of the two subsystems. A canted magnetic arrangement may occur, mediating between these two extremes. By measuring the anisotropy below and above the N\'eel temperature the interlayer exchange coupling can be determined. The calculations have been performed with a Heisenberg-like Hamiltonian by application of a two-spin mean-field theory.Comment: 4 pages, 4 figure

    A simple calibration-independent method for measuring the beam energy of a cyclotron

    Get PDF

    Multigenic lentiviral vectors for combined and tissue-specific expression of miRNA- and protein-based antiangiogenic factors.

    Get PDF
    Lentivirus-based gene delivery vectors carrying multiple gene cassettes are powerful tools in gene transfer studies and gene therapy, allowing coexpression of multiple therapeutic factors and, if desired, fluorescent reporters. Current strategies to express transgenes and microRNA (miRNA) clusters from a single vector have certain limitations that affect transgene expression levels and/or vector titers. In this study, we describe a novel vector design that facilitates combined expression of therapeutic RNA- and protein-based antiangiogenic factors as well as a fluorescent reporter from back-to-back RNApolII-driven expression cassettes. This configuration allows effective production of intron-embedded miRNAs that are released upon transduction of target cells. Exploiting such multigenic lentiviral vectors, we demonstrate robust miRNA-directed downregulation of vascular endothelial growth factor (VEGF) expression, leading to reduced angiogenesis, and parallel impairment of angiogenic pathways by codelivering the gene encoding pigment epithelium-derived factor (PEDF). Notably, subretinal injections of lentiviral vectors reveal efficient retinal pigment epithelium-specific gene expression driven by the VMD2 promoter, verifying that multigenic lentiviral vectors can be produced with high titers sufficient for in vivo applications. Altogether, our results suggest the potential applicability of combined miRNA- and protein-encoding lentiviral vectors in antiangiogenic gene therapy, including new combination therapies for amelioration of age-related macular degeneration

    Differential systems associated with tableaux over Lie algebras

    Full text link
    We give an account of the construction of exterior differential systems based on the notion of tableaux over Lie algebras as developed in [Comm. Anal. Geom 14 (2006), 475-496; math.DG/0412169]. The definition of a tableau over a Lie algebra is revisited and extended in the light of the formalism of the Spencer cohomology; the question of involutiveness for the associated systems and their prolongations is addressed; examples are discussed.Comment: 16 pages; to appear in: "Symmetries and Overdetermined Systems of Partial Differential Equations" (M. Eastwood and W. Miller, Jr., eds.), IMA Volumes in Mathematics and Its Applications, Springer-Verlag, New Yor

    Roughness at the depinning threshold for a long-range elastic string

    Full text link
    In this paper, we compute the roughness exponent zeta of a long-range elastic string, at the depinning threshold, in a random medium with high precision, using a numerical method which exploits the analytic structure of the problem (`no-passing' theorem), but avoids direct simulation of the evolution equations. This roughness exponent has recently been studied by simulations, functional renormalization group calculations, and by experiments (fracture of solids, liquid meniscus in 4He). Our result zeta = 0.390 +/- 0.002 is significantly larger than what was stated in previous simulations, which were consistent with a one-loop renormalization group calculation. The data are furthermore incompatible with the experimental results for crack propagation in solids and for a 4He contact line on a rough substrate. This implies that the experiments cannot be described by pure harmonic long-range elasticity in the quasi-static limit.Comment: 4 pages, 3 figure

    Interface Depinning in the Absence of External Driving Force

    Full text link
    We study the pinning-depinning phase transition of interfaces in the quenched Kardar-Parisi-Zhang model as the external driving force FF goes towards zero. For a fixed value of the driving force we induce depinning by increasing the nonlinear term coefficient λ\lambda, which is related to lateral growth, up to a critical threshold. We focus on the case in which there is no external force applied (F=0) and find that, contrary to a simple scaling prediction, there is a finite value of λ\lambda that makes the interface to become depinned. The critical exponents at the transition are consistent with directed percolation depinning. Our results are relevant for paper wetting experiments, in which an interface gets moving with no external driving force.Comment: 4 pages, 3 figures included, uses epsf. Submitted to PR

    Helioseismology of Sunspots: A Case Study of NOAA Region 9787

    Get PDF
    Various methods of helioseismology are used to study the subsurface properties of the sunspot in NOAA Active Region 9787. This sunspot was chosen because it is axisymmetric, shows little evolution during 20-28 January 2002, and was observed continuously by the MDI/SOHO instrument. (...) Wave travel times and mode frequencies are affected by the sunspot. In most cases, wave packets that propagate through the sunspot have reduced travel times. At short travel distances, however, the sign of the travel-time shifts appears to depend sensitively on how the data are processed and, in particular, on filtering in frequency-wavenumber space. We carry out two linear inversions for wave speed: one using travel-times and phase-speed filters and the other one using mode frequencies from ring analysis. These two inversions give subsurface wave-speed profiles with opposite signs and different amplitudes. (...) From this study of AR9787, we conclude that we are currently unable to provide a unified description of the subsurface structure and dynamics of the sunspot.Comment: 28 pages, 18 figure

    Orientational pinning and transverse voltage: Simulations and experiments in square Josephson junction arrays

    Full text link
    We study the dependence of the transport properties of square Josephson Junctions arrays with the direction of the applied dc current, both experimentally and numerically. We present computational simulations of current-voltage curves at finite temperatures for a single vortex in the array (Ha2/Φ0=f=1/L2Ha^2/\Phi_0=f=1/L^2), and experimental measurements in 100×1000100\times1000 arrays under a low magnetic field corresponding to f0.02f\approx0.02. We find that the transverse voltage vanishes only in the directions of maximum symmetry of the square lattice: the [10] and [01] direction (parallel bias) and the [11] direction (diagonal bias). For orientations different than the symmetry directions, we find a finite transverse voltage which depends strongly on the angle ϕ\phi of the current. We find that vortex motion is pinned in the [10] direction (ϕ=0\phi=0), meaning that the voltage response is insensitive to small changes in the orientation of the current near ϕ=0\phi=0. We call this phenomenon orientational pinning. This leads to a finite transverse critical current for a bias at ϕ=0\phi=0 and to a transverse voltage for a bias at ϕ0\phi\not=0. On the other hand, for diagonal bias in the [11] direction the behavior is highly unstable against small variations of ϕ\phi, leading to a rapid change from zero transverse voltage to a large transverse voltage within a few degrees. This last behavior is in good agreement with our measurements in arrays with a quasi-diagonal current drive.Comment: 9 pages, 9 figure
    corecore