27,246 research outputs found
Study of the one-dimensional off-lattice hot-monomer reaction model
Hot monomers are particles having a transient mobility (a ballistic flight)
prior to being definitely absorbed on a surface. After arriving at a surface,
the excess energy coming from the kinetic energy in the gas phase is dissipated
through degrees of freedom parallel to the surface plane. In this paper we
study the hot monomer-monomer adsorption-reaction process on a continuum
(off-lattice) one-dimensional space by means of Monte Carlo simulations. The
system exhibits second-order irreversible phase transition between a reactive
and saturated (absorbing) phases which belong to the directed percolation (DP)
universality class. This result is interpreted by means of a coarse-grained
Langevin description which allows as to extend the DP conjecture to transitions
occurring in continuous media.Comment: 13 pages, 5 figures, final version to appear in J. Phys.
Dynamic Critical approach to Self-Organized Criticality
A dynamic scaling Ansatz for the approach to the Self-Organized Critical
(SOC) regime is proposed and tested by means of extensive simulations applied
to the Bak-Sneppen model (BS), which exhibits robust SOC behavior. Considering
the short-time scaling behavior of the density of sites () below the
critical value, it is shown that i) starting the dynamics with configurations
such that one observes an {\it initial increase} of the
density with exponent ; ii) using initial configurations with
, the density decays with exponent . It is
also shown that he temporal autocorrelation decays with exponent . Using these, dynamically determined, critical exponents and suitable
scaling relationships, all known exponents of the BS model can be obtained,
e.g. the dynamical exponent , the mass dimension exponent , and the exponent of all returns of the activity , in excellent agreement with values already accepted and obtained
within the SOC regime.Comment: Rapid Communication Physical Review E in press (4 pages, 5 figures
Universality of three-body systems in 2D: parametrization of the bound states energies
Universal properties of mass-imbalanced three-body systems in 2D are studied
using zero-range interactions in momentum space. The dependence of the
three-particle binding energy on the parameters (masses and two-body energies)
is highly non-trivial even in the simplest case of two identical particles and
a distinct one. This dependence is parametrized for ground and excited states
in terms of {\itshape supercircles} functions in the most general case of three
distinguishable particles.Comment: 3 pages, 1 figure, published versio
Angular distributions of scattered excited muonic hydrogen atoms
Differential cross sections of the Coulomb deexcitation in the collisions of
excited muonic hydrogen with the hydrogen atom have been studied for the first
time. In the framework of the fully quantum-mechanical close-coupling approach
both the differential cross sections for the transitions and
-averaged differential cross sections have been calculated for exotic atom
in the initial states with the principle quantum number at relative
motion energies eV and at scattering angles
. The vacuum polarization shifts of the
-states are taken into account. The calculated in the same approach
differential cross sections of the elastic and Stark scattering are also
presented. The main features of the calculated differential cross sections are
discussed and a strong anisotropy of cross sections for the Coulomb
deexcitation is predicted.Comment: 5 pages, 9 figure
Low temperature series expansions for the square lattice Ising model with spin S > 1
We derive low-temperature series (in the variable )
for the spontaneous magnetisation, susceptibility and specific heat of the
spin- Ising model on the square lattice for , 2, , and
3. We determine the location of the physical critical point and non-physical
singularities. The number of non-physical singularities closer to the origin
than the physical critical point grows quite rapidly with . The critical
exponents at the singularities which are closest to the origin and for which we
have reasonably accurate estimates are independent of . Due to the many
non-physical singularities, the estimates for the physical critical point and
exponents are poor for higher values of , though consistent with
universality.Comment: 14 pages, LaTeX with IOP style files (ioplppt.sty), epic.sty and
eepic.sty. To appear in J. Phys.
The Successful Operation of Hole-type Gaseous Detectors at Cryogenic Temperatures
We have demonstrated that hole-type gaseous detectors, GEMs and capillary
plates, can operate up to 77 K. For example, a single capillary plate can
operate at gains of above 10E3 in the entire temperature interval between 300
until 77 K. The same capillary plate combined with CsI photocathodes could
operate perfectly well at gains (depending on gas mixtures) of 100-1000.
Obtained results may open new fields of applications for capillary plates as
detectors of UV light and charge particles at cryogenic temperatures: noble
liquid TPCs, WIMP detectors or LXe scintillating calorimeters and cryogenic
PETs.Comment: Presented at the IEEE Nuclear Science Symposium, Roma, 200
- …