3 research outputs found

    In Vitro Protein Binding of Liraglutide in Human Plasma Determined by Reiterated Stepwise Equilibrium Dialysis

    Get PDF
    ABSTRACTLiraglutide is a human glucagon-like peptide-1 (GLP-1) analogue approved for the treatment of type 2 diabetes. It is based on human GLP-1 with the addition of a 16-carbon fatty acid, which facilitates binding to plasma proteins, thus prolonging the elimination half-life and allowing once-daily administration. It has not been possible to quantify liraglutide protein binding by ultrafiltration (the usual method of choice), as the lipophilic molecule becomes trapped in the filter membrane. Therefore, the aim of this study was to develop a methodology that could determine the extent of liraglutide binding to plasma proteins in vitro. We report here the details of a novel reiterated stepwise equilibrium dialysis assay that has successfully been used to quantify liraglutide plasma protein binding. The assay allowed quantification of liraglutide binding to proteins in purified plasma protein solutions and human plasma samples and was effective at plasma dilutions as low as 5%. At a clinically relevant liraglutide concentration (104pM), greater than 98.9% of liraglutide was bound to protein. Specific binding to human serum albumin and α1-acid glycoprotein was 99.4% and 99.3%, respectively. The novel methodology described herein could have an application in the quantification of plasma protein binding of other highly lipophilic drug molecules. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 102:2882–2888, 201

    Development of Insulin Detemir/Insulin Aspart Cross-Reacting Antibodies Following Treatment with Insulin Detemir: 104-week Study in Children and Adolescents with Type 1 Diabetes Aged 2–16 Years

    No full text
    <p><strong>Article full text</strong></p> <p><br> The full text of this article can be found <a href="https://link.springer.com/article/10.1007/s13300-016-0196-5"><b>here</b>.</a><br> <br> <strong>Provide enhanced digital features for this article</strong><br> If you are an author of this publication and would like to provide additional enhanced digital features for your article then please contact <u>[email protected]</u>.<br> <br> The journal offers a range of additional features designed to increase visibility and readership. All features will be thoroughly peer reviewed to ensure the content is of the highest scientific standard and all features are marked as ‘peer reviewed’ to ensure readers are aware that the content has been reviewed to the same level as the articles they are being presented alongside. Moreover, all sponsorship and disclosure information is included to provide complete transparency and adherence to good publication practices. This ensures that however the content is reached the reader has a full understanding of its origin. No fees are charged for hosting additional open access content.<br> <br> Other enhanced features include, but are not limited to:<br> • Slide decks<br> • Videos and animations<br> • Audio abstracts<br> • Audio slides<u></u></p> <p> </p> <p> </p

    A fit-for-purpose strategy for the risk-based immunogenicity testing of biotherapeutics - a European industry perspective

    No full text
    There is much debate in the pharmaceutical industry on how to translate the current guidelines on immunogenicity testing for biotherapeutics into a testing strategy that suits the specific requirements of individual drug candidates. In this paper, member companies from the European immunogenicity platform (EIP) present a consensus view on the essential requirements for immunogenicity testing of a biotherapeutic throughout the various phases of drug development, to ensure patient safety and to enable successful market entry. Our aim is to open the debate and provoke discussion on this important topic which is unique to biotherapeutic drug development. The scope of this paper is limited to aspects relevant to biotherapeutic drug development and does not include fundamental academic studies of immunogenicity. Here, we propose two pre-defined testing strategies for the detection and characterization of anti-drug antibody (ADA) responses where the different strategies are based on the phase of development for a biotherapeutic, a. without (category 1) and b. with (category 2) the expected potential to elicit ADA mediated severe clinical consequences. The harm of a potential ADA response determines which of the two testing strategies is adopted. The scientific rationale on which the "case-by-case" approach advocated in white papers and guidance documents may be translated for each individual drug development program is provided and, underpins the recommendations made here
    corecore