169 research outputs found

    Application of processed organic municipal solid waste on agricultural land - a scenario analysis

    Get PDF
    Source separation, composting and anaerobic digestion, with associated land application, are increasingly being considered as alternative waste management strategies to landfilling and incineration of municipal solid waste (MSW). Environmental life cycle assessments are a useful tool in political decision-making about waste management strategies. However, due to the diversity of processed organic MSW and the situations in which it can be applied, the environmental impacts of land application are very hard to determine by experimental means. In the current study, we used the agroecosystem model Daisy to simulate a range of different scenarios representing different geographical areas, farm and soil types under Danish conditions and legislation. Generally, the application of processed organic MSW resulted in increased emissions compared with the corresponding standard scenarios, but with large differences between scenarios. Emission coefficients for nitrogen leaching to the groundwater ranged from 0.03 to 0.87, while those for nitrogen lost to surface waters through tile drains ranged from 0 to 0.30. Emission coefficients for N2O formation ranged from 0.013 to 0.022 and for ammonia volatilization from 0.016 to 0.11. These estimates are within reasonable range of observed values under similar conditions. Furthermore, a sensitivity analysis showed that the estimates were not very sensitive to the mineralization dynamics of the processed organic MSW. The results show that agroecosystem models can be powerful tools to estimate the environmental impacts of land application of processed MSW under different conditions. Despite this, agroecosystem models have only been used to a very limited degree for this purpose

    Life cycle modelling of environmental impacts of application of processed organic municipal solid waste on agricultural land (EASEWASTE)

    Get PDF
    A model capable of quantifying the potential environmental impacts of agricultural application of composted or anaerobically digested source-separated organic municipal solid waste (MSW) is presented. In addition to the direct impacts, the model accounts for savings by avoiding the production and use of commercial fertilizers. The model is part of a larger model, Environmental Assessment of Solid Waste Systems and Technology (EASEWASTE), developed as a decisionsupport model, focusing on assessment of alternative waste management options. The environmental impacts of the land application of processed organic waste are quantified by emission coefficients referring to the composition of the processed waste and related to specific crop rotation as well as soil type. The model contains several default parameters based on literature data, field experiments and modelling by the agro-ecosystem model, Daisy. All data can be modified by the user allowing application of the model to other situations. A case study including four scenarios was performed to illustrate the use of the model. One tonne of nitrogen in composted and anaerobically digested MSW was applied as fertilizer to loamy and sandy soil at a plant farm in western Denmark. Application of the processed organic waste mainly affected the environmental impact categories global warming (0.4–0.7 PE), acidification (–0.06 (saving)–1.6 PE), nutrient enrichment (–1.0 (saving)–3.1 PE), and toxicity. The main contributors to these categories were nitrous oxide formation (global warming), ammonia volatilization (acidification and nutrient enrichment), nitrate losses (nutrient enrichment and groundwater contamination), and heavy metal input to soil (toxicity potentials). The local agricultural conditions as well as the composition of the processed MSW showed large influence on the environmental impacts. A range of benefits, mainly related to improved soil quality from long-term application of the processed organic waste, could not be generally quantified with respect to the chosen life cycle assessment impact categories and were therefore not included in the model. These effects should be considered in conjunction with the results of the life cycle assessment

    Major Cardiac Events in Patients and Relatives With Hereditary Hypertrophic Cardiomyopathy

    Get PDF
    BackgroundLittle evidence is available on the disease expression in relatives of index patients with hypertrophic cardiomyopathy (HCM). This information has important implications for family screening programs, genetic counseling, and management of affected families.ObjectivesThe purpose of this study was to investigate the disease expression and penetrance in relatives of index patients carrying pathogenic/likely pathogenic (P/LP) variants in recognized HCM genes.MethodsA total of 453 consecutive and unrelated HCM index patients underwent clinical and genetic investigations. A total of 903 relatives of genotype-positive index patients were invited for clinical investigations and genetic testing. Penetrance, disease expression, and incidence rates of major adverse cardiac events (MACEs) were investigated in individuals carrying P/LP variants.ResultsForty percent (183/453) of index patients carried a P/LP variant. Eighty-four percent (757/903) of all relatives of index patients with P/LP variants were available for the investigation, of whom 54% (407/757) carried a P/LP variant. The penetrance of HCM among relatives was 39% (160/407). Relatives with HCM and index patients were diagnosed at a similar age (43 ± 18 years vs 46 ± 15 years; P = 0.11). There were no differences in clinical characteristics or incidence rates of MACE during 8 years of follow-up.ConclusionsThe disease expression of HCM among index patients and affected relatives carrying P/LP variants in recognized disease genes was similar, with an equal risk of experiencing MACE. These findings provide evidence to support family screening and follow-up of genotype-positive HCM families to improve management and diminish the number of adverse disease complications among relatives

    Hepatitis E Virus Variant in Farmed Mink, Denmark

    Get PDF
    Hepatitis E virus (HEV) is a zoonotic virus for which pigs are the primary animal reservoir. To investigate whether HEV occurs in mink in Denmark, we screened feces and tissues from domestic and wild mink. Our finding of a novel HEV variant supports previous findings of HEV variants in a variety of species

    GNSS-IR Measurements of Inter Annual Sea Level Variations in Thule, Greenland from 2008–2019

    Get PDF
    Studies of global sea level often exclude Tide Gauges (TGs) in glaciated regions due to vertical land movement. Recent studies show that geodetic GNSS stations can be used to estimate sea level by taking advantage of the reflections from the ocean surface using GNSS Interferometric Reflectometry (GNSS-IR). This method has the immediate benefit that one can directly correct for bedrock movements as measured by the GNSS station. Here we test whether GNSS-IR can be used for measurements of inter annual sea level variations in Thule, Greenland, which is affected by sea ice and icebergs during much of the year. We do this by comparing annual average sea level variations using the two methods from 2008–2019. Comparing the individual sea level measurements over short timescales we find a root mean square deviation (RMSD) of 13 cm, which is similar to other studies using spectral methods. The RMSD for the annual average sea level variations between TG and GNSS-IR is large (18 mm) compared to the estimated uncertainties concerning the measurements. We expect that this is in part due to the TG not being datum controlled. We find sea level trends from GNSS-IR and TG of −4 and −7 mm/year, respectively. The negative trend can be partly explained by a gravimetric decrease in sea level as a result of ice mass changes. We model the gravimetric sea level from 2008–2017 and find a trend of −3 mm/year

    A multidisciplinary approach to landslide monitoring in the Arctic: Case study of the March 2018 ML 1.9 seismic event near the Karrat 2017 landslide

    Get PDF
    The landslide of 17 June 2017 at Karrat Fjord, central West Greenland, triggered a tsunami that caused four fatalities. The catastrophe highlighted the need for a better understanding of landslides in Greenland and initiated a recent nation-wide landslide screening project led by the Geological Survey of Denmark and Greenland (GEUS; see also Svennevig (2019) this volume). This paper describes an approach for compiling freely available data to improve GEUS’ capability to monitor active landslides in remote areas of the Arctic in near real time. Data include seismological records, space borne Synthetic Aperture Radar (SAR) data and multispectral optical satellite imagery. The workflow was developed in 2018 as part of a collaboration between GEUS and scientists from the Technical University of Denmark (DTU). This methodology provides a model through which GEUS will be able to monitor active landslides and provide relevant knowledge to the public and authorities in the event of future landslides that pose a risk to human life and infrastructure in Greenland. We use a minor event on 26 March 2018, near the site of the Karrat 2017 landslide, as a case study to demonstrate 1) the value of multidisciplinary approaches and 2) that the area around the landslide has continued to be periodically active since the main landslide in 2017
    corecore