35,296 research outputs found

    Circumstellar Disks Around Binary Stars in Taurus

    Get PDF
    We have conducted a survey of 17 wide (> 100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and ten secondaries, with disk masses as low as 104M10^{-4} M_{\odot}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of FmmM1.52.0F_{mm} \propto M_{\ast}^{1.5-2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.Comment: To appear in the Astrophysical Journal, 12 page

    Can Post T Tauri Stars Be Found? Yes!

    Get PDF
    I review the observational challenges of finding post T Tauri stars (PTTS), defined here as low-mass, pre-main-sequence stars with ages of 10^7-10^8 yr. Such stars are difficult to find because they are less active than younger T Tauri stars, and they may not be associated with molecular gas. They are useful for studying the evolution of circumstellar disks and stellar activity between the 10^6-yr ages of nearby star-forming regions and the main sequence. However, care must be taken in the search process so that the selection criteria used to locate such stars do not bias the sample used for subsequent evolutionary studies

    Investigation of resonant and transient phenomena in Josephson junction flux qubits

    Full text link
    We present an analytical and computational study of resonances and transient responses in a classical Josephson junction system. A theoretical basis for resonances in a superconducting loop with three junctions is presented, outlining both the direct relationship between the dynamics of single- and multi-junction systems, and the direct relationships between observations of the classical counterparts to Rabi oscillations, Ramsey fringes, and spin echo oscillations in this class of systems. We show simulations data along with analytical analyses of the classical model, and the results are related to previously reported experiments conducted on three junction loops. We further investigate the effect of off-resonant microwave perturbations to, e.g., the Rabi-type response of the Josephson system, and we relate this response back to the nonlinear and multi-valued resonance behavior previously reported for a single Josephson junction. The close relationships between single and multi-junction behavior demonstrates the underlying dynamical mechanism for a whole class of classical counterparts to expected quantum mechanical observations in a variety of systems; namely the resonant and transient behavior of a particle in an anharmonic potential well with subsequent escape.Comment: 11 pages, seven figure

    Three-body Thomas-Ehrman shifts of analog states of 17^{17}Ne and 17^{17}N

    Full text link
    The lowest-lying states of the Borromean nucleus 17^{17}Ne (15^{15}O+pp + pp) and its mirror nucleus 17^{17}N (15^{15}N+nn + nn) are compared by using the hyperspheric adiabatic expansion. Three-body resonances are computed by use of the complex scaling method. The measured size of 15^{15}O and the low-lying resonances of 16^{16}F (15^{15}O+pp) are first used as constraints to determine both central and spin-dependent two-body interactions. The interaction obtained reproduces relatively accurately both experimental three-body spectra. The Thomas-Ehrman shifts, involving excitation energy differences, are computed and found to be less than 3% of the total Coulomb energy shift for all states.Comment: 9 pages, 3 postscript figures, revtex style. To be published in Phys. Rev.

    First-principles study of the energetics of charge and cation mixing in U_{1-x} Ce_x O_2

    Full text link
    The formalism of electronic density-functional-theory, with Hubbard-U corrections (DFT+U), is employed in a computational study of the energetics of U_{1-x} Ce_x O_2 mixtures. The computational approach makes use of a procedure which facilitates convergence of the calculations to multiple self-consistent DFT+U solutions for a given cation arrangement, corresponding to different charge states for the U and Ce ions in several prototypical cation arrangements. Results indicate a significant dependence of the structural and energetic properties on the nature of both charge and cation ordering. With the effective Hubbard-U parameters that reproduce well the measured oxidation-reduction energies for urania and ceria, we find that charge transfer between U(IV) and Ce(IV) ions, leading to the formation of U(V) and Ce(III), gives rise to an increase in the mixing energy in the range of 4-14 kJ/mol of formula unit, depending on the nature of the cation ordering. The results suggest that although charge transfer between uranium and cerium ions is disfavored energetically, it is likely to be entropically stabilized at the high temperatures relevant to the processing and service of urania-based solid solutions.Comment: 8 pages, 6 figure

    Honeycomb lattice polygons and walks as a test of series analysis techniques

    Full text link
    We have calculated long series expansions for self-avoiding walks and polygons on the honeycomb lattice, including series for metric properties such as mean-squared radius of gyration as well as series for moments of the area-distribution for polygons. Analysis of the series yields accurate estimates for the connective constant, critical exponents and amplitudes of honeycomb self-avoiding walks and polygons. The results from the numerical analysis agree to a high degree of accuracy with theoretical predictions for these quantities.Comment: 16 pages, 9 figures, jpconf style files. Presented at the conference "Counting Complexity: An international workshop on statistical mechanics and combinatorics." In celebration of Prof. Tony Guttmann's 60th birthda

    Layer Features of the Lattice Gas Model for Self-Organized Criticality

    Full text link
    A layer-by-layer description of the asymmetric lattice gas model for 1/f-noise suggested by Jensen [Phys. Rev. Lett. 64, 3103 (1990)] is presented. The power spectra of the lattice layers in the direction perpendicular to the particle flux is studied in order to understand how the white noise at the input boundary evolves, on the average, into 1/f-noise for the system. The effects of high boundary drive and uniform driving force on the power spectrum of the total number of diffusing particles are considered. In the case of nearest-neighbor particle interactions, high statistics simulation results show that the power spectra of single lattice layers are characterized by different βx\beta_x exponents such that βx1.9\beta_x \to 1.9 as one approaches the outer boundary.Comment: LaTeX, figures upon reques

    Perimeter Generating Functions For The Mean-Squared Radius Of Gyration Of Convex Polygons

    Full text link
    We have derived long series expansions for the perimeter generating functions of the radius of gyration of various polygons with a convexity constraint. Using the series we numerically find simple (algebraic) exact solutions for the generating functions. In all cases the size exponent ν=1\nu=1.Comment: 8 pages, 1 figur

    Calculations of Energy Losses due to Atomic Processes in Tokamaks with Applications to the ITER Divertor

    Full text link
    Reduction of the peak heat loads on the plasma facing components is essential for the success of the next generation of high fusion power tokamaks such as the International Thermonuclear Experimental Reactor (ITER) 1 . Many present concepts for accomplishing this involve the use of atomic processes to transfer the heat from the plasma to the main chamber and divertor chamber walls and much of the experimental and theoretical physics research in the fusion program is directed toward this issue. The results of these experiments and calculations are the result of a complex interplay of many processes. In order to identify the key features of these experiments and calculations and the relative role of the primary atomic processes, simple quasi-analytic models and the latest atomic physics rate coefficients and cross sections have been used to assess the relative roles of central radiation losses through bremsstrahlung, impurity radiation losses from the plasma edge, charge exchange and hydrogen radiation losses from the scrape-off layer and divertor plasma and impurity radiation losses from the divertor plasma. This anaysis indicates that bremsstrahlung from the plasma center and impurity radiation from the plasma edge and divertor plasma can each play a significant role in reducing the power to the divertor plates, and identifies many of the factors which determine the relative role of each process. For instance, for radiation losses in the divertor to be large enough to radiate the power in the divertor for high power experiments, a neutral fraction of 10-3 to 10-2 and an impurity recycling rate of netrecycle of ~ 10^16 s m^-3 will be required in the divertor.Comment: Preprint for the 1994 APSDPP meeting, uuencoded and gzipped postscript with 22 figures, 40 pages
    corecore