58,442 research outputs found

    Low-density series expansions for directed percolation III. Some two-dimensional lattices

    Full text link
    We use very efficient algorithms to calculate low-density series for bond and site percolation on the directed triangular, honeycomb, kagom\'e, and (4.82)(4.8^2) lattices. Analysis of the series yields accurate estimates of the critical point pcp_c and various critical exponents. The exponent estimates differ only in the 5th5^{th} digit, thus providing strong numerical evidence for the expected universality of the critical exponents for directed percolation problems. In addition we also study the non-physical singularities of the series.Comment: 20 pages, 8 figure

    Absence of orbital-selective Mott transition in Ca_2-xSr_xRuO4

    Full text link
    Quasi-particle spectra of the layer perovskite Sr2_2RuO4_4 are calculated within Dynamical Mean Field Theory for increasing values of the on-site Coulomb energy UU. At small UU the planar geometry splits the t2gt_{2g} bands near EFE_F into a wide, two-dimensional dxyd_{xy} band and two narrow, nearly one-dimensional dxz,yzd_{xz,yz} bands. At larger UU, however, the spectral distribution of these states exhibit similar correlation features, suggesting a common metal-insulator transition for all t2gt_{2g} bands at the same critical UU.Comment: 4 pages, 4 figure

    Low-density series expansions for directed percolation II: The square lattice with a wall

    Full text link
    A new algorithm for the derivation of low-density expansions has been used to greatly extend the series for moments of the pair-connectedness on the directed square lattice near an impenetrable wall. Analysis of the series yields very accurate estimates for the critical point and exponents. In particular, the estimate for the exponent characterizing the average cluster length near the wall, τ1=1.00014(2)\tau_1=1.00014(2), appears to exclude the conjecture τ1=1\tau_1=1. The critical point and the exponents ν∥\nu_{\parallel} and ν⊥\nu_{\perp} have the same values as for the bulk problem.Comment: 8 pages, 1 figur

    1/z-renormalization of the mean-field behavior of the dipole-coupled singlet-singlet system HoF_3

    Full text link
    The two main characteristics of the holmium ions in HoF_3 are that their local electronic properties are dominated by two singlet states lying well below the remaining 4f-levels, and that the classical dipole-coupling is an order of magnitude larger than any other two-ion interactions between the Ho-moments. This combination makes the system particularly suitable for testing refinements of the mean-field theory. There are four Ho-ions per unit cell and the hyperfine coupled electronic and nuclear moments on the Ho-ions order in a ferrimagnetic structure at T_C=0.53 K. The corrections to the mean-field behavior of holmium triflouride, both in the paramagnetic and ferrimagnetic phase, have been calculated to first order in the high-density 1/z-expansion. The effective medium theory, which includes the effects of the single-site fluctuations, leads to a substantially improved description of the magnetic properties of HoF_3, in comparison with that based on the mean-field approximation.Comment: 26pp, plain-TeX, JJ

    Directed percolation near a wall

    Full text link
    Series expansion methods are used to study directed bond percolation clusters on the square lattice whose lateral growth is restricted by a wall parallel to the growth direction. The percolation threshold pcp_c is found to be the same as that for the bulk. However the values of the critical exponents for the percolation probability and mean cluster size are quite different from those for the bulk and are estimated by β1=0.7338±0.0001\beta_1 = 0.7338 \pm 0.0001 and γ1=1.8207±0.0004\gamma_1 = 1.8207 \pm 0.0004 respectively. On the other hand the exponent Δ1=β1+γ1\Delta_1=\beta_1 +\gamma_1 characterising the scale of the cluster size distribution is found to be unchanged by the presence of the wall. The parallel connectedness length, which is the scale for the cluster length distribution, has an exponent which we estimate to be ν1∥=1.7337±0.0004\nu_{1\parallel} = 1.7337 \pm 0.0004 and is also unchanged. The exponent τ1\tau_1 of the mean cluster length is related to β1\beta_1 and ν1∥\nu_{1\parallel} by the scaling relation ν1∥=β1+τ1\nu_{1\parallel} = \beta_1 + \tau_1 and using the above estimates yields τ1=1\tau_1 = 1 to within the accuracy of our results. We conjecture that this value of τ1\tau_1 is exact and further support for the conjecture is provided by the direct series expansion estimate τ1=1.0002±0.0003\tau_1= 1.0002 \pm 0.0003.Comment: 12pages LaTeX, ioplppt.sty, to appear in J. Phys.

    Computation of spectroscopic factors with the coupled-cluster method

    Full text link
    We present a calculation of spectroscopic factors within coupled-cluster theory. Our derivation of algebraic equations for the one-body overlap functions are based on coupled-cluster equation-of-motion solutions for the ground and excited states of the doubly magic nucleus with mass number AA and the odd-mass neighbor with mass A−1A-1. As a proof-of-principle calculation, we consider 16^{16}O and the odd neighbors 15^{15}O and 15^{15}N, and compute the spectroscopic factor for nucleon removal from 16^{16}O. We employ a renormalized low-momentum interaction of the Vlow−kV_{\mathrm{low-}k} type derived from a chiral interaction at next-to-next-to-next-to-leading order. We study the sensitivity of our results by variation of the momentum cutoff, and then discuss the treatment of the center of mass.Comment: 8 pages, 6 figures, 3 table
    • …
    corecore