43 research outputs found

    Efficacy and tolerability of evolocumab vs. ezetimibe in patients with muscle-related statin intolerance: the GAUSS-3 randomized clinical trial

    No full text
    Importance: Muscle-related statin intolerance is reported by 5% to 20% of patients. Objective: To identify patients with muscle symptoms confirmed by statin rechallenge and compare lipid-lowering efficacy for 2 nonstatin therapies, ezetimibe and evolocumab. Design, Setting, and Participants: Two-stage randomized clinical trial including 511 adult patients with uncontrolled low-density lipoprotein cholesterol (LDL-C) levels and history of intolerance to 2 or more statins enrolled in 2013 and 2014 globally. Phase A used a 24-week crossover procedure with atorvastatin or placebo to identify patients having symptoms only with atorvastatin but not placebo. In phase B, after a 2-week washout, patients were randomized to ezetimibe or evolocumab for 24 weeks. Interventions: Phase A: atorvastatin (20 mg) vs placebo. Phase B: randomization 2:1 to subcutaneous evolocumab (420 mg monthly) or oral ezetimibe (10 mg daily). Main Outcome and Measures: Coprimary end points were the mean percent change in LDL-C level from baseline to the mean of weeks 22 and 24 levels and from baseline to week 24 levels. Results: Of the 491 patients who entered phase A (mean age, 60.7 [SD, 10.2] years; 246 women [50.1%]; 170 with coronary heart disease [34.6%]; entry mean LDL-C level, 212.3 [SD, 67.9] mg/dL), muscle symptoms occurred in 209 of 491 (42.6%) while taking atorvastatin but not while taking placebo. Of these, 199 entered phase B, along with 19 who proceeded directly to phase B for elevated creatine kinase (N = 218, with 73 randomized to ezetimibe and 145 to evolocumab; entry mean LDL-C level, 219.9 [SD, 72] mg/dL). For the mean of weeks 22 and 24, LDL-C level with ezetimibe was 183.0 mg/dL; mean percent LDL-C change, −16.7% (95% CI, −20.5% to −12.9%), absolute change, −31.0 mg/dL and with evolocumab was 103.6 mg/dL; mean percent change, −54.5% (95% CI, −57.2% to −51.8%); absolute change, −106.8 mg/dL (P < .001). LDL-C level at week 24 with ezetimibe was 181.5 mg/dL; mean percent change, −16.7% (95% CI, −20.8% to −12.5%); absolute change, −31.2 mg/dL and with evolocumab was 104.1 mg/dL; mean percent change, −52.8% (95% CI, −55.8% to −49.8%); absolute change, −102.9 mg/dL (P < .001). For the mean of weeks 22 and 24, between-group difference in LDL-C was −37.8%; absolute difference, −75.8 mg/dL. For week 24, between-group difference in LDL-C was −36.1%; absolute difference, –71.7 mg/dL. Muscle symptoms were reported in 28.8% of ezetimibe-treated patients and 20.7% of evolocumab-treated patients (log-rank P = .17). Active study drug was stopped for muscle symptoms in 5 of 73 ezetimibe-treated patients (6.8%) and 1 of 145 evolocumab-treated patients (0.7%). Conclusions and Relevance: Among patients with statin intolerance related to muscle-related adverse effects, the use of evolocumab compared with ezetimibe resulted in a significantly greater reduction in LDL-C levels after 24 weeks. Further studies are needed to assess long-term efficacy and safety

    Diagnostic Yield of Genetic Testing in Young Patients With Atrioventricular Block of Unknown Cause

    Get PDF
    BACKGROUND: The cause of atrioventricular block (AVB) remains unknown in approximately half of young patients with the diagnosis. Although variants in several genes associated with cardiac conduction diseases have been identified, the contribution of genetic variants in younger patients with AVB is unknown. METHODS AND RESULTS: Using the Danish Pacemaker and Implantable Cardioverter Defibrillator (ICD) Registry, we identified all patients younger than 50 years receiving a pacemaker because of AVB in Denmark in the period from January 1, 1996 to December 31, 2015. From medical records, we identified patients with unknown cause of AVB at time of pacemaker implantation. These patients were invited to a genetic screening using a panel of 102 genes associated with inherited cardiac diseases. We identified 471 living patients with AVB of unknown cause, of whom 226 (48%) accepted participation. Median age at the time of pacemaker implantation was 39 years (interquartile range, 32–45 years), and 123 (54%) were men. We found pathogenic or likely pathogenic variants in genes associated with or possibly associated with AVB in 12 patients (5%). Most variants were found in the LMNA gene (n=5). LMNA variant carriers all had a family history of either AVB and/or sudden cardiac death. CONCLUSIONS: In young patients with AVB of unknown cause, we found a possible genetic cause in 1 out of 20 participating patients. Variants in the LMNA gene were most common and associated with a family history of AVB and/or sudden cardiac death, suggesting that genetic testing should be a part of the diagnostic workup in these patients to stratify risk and screen family members

    Arrhythmic risk prediction in arrhythmogenic right ventricular cardiomyopathy: external validation of the arrhythmogenic right ventricular cardiomyopathy risk calculator

    Get PDF
    Aims Arrhythmogenic right ventricular cardiomyopathy (ARVC) causes ventricular arrhythmias (VAs) and sudden cardiac death (SCD). In 2019, a risk prediction model that estimates the 5-year risk of incident VAs in ARVC was developed (ARVCrisk.com). This study aimed to externally validate this prediction model in a large international multicentre cohort and to compare its performance with the risk factor approach recommended for implantable cardioverter-defibrillator (ICD) use by published guidelines and expert consensus.Methods and results In a retrospective cohort of 429 individuals from 29 centres in North America and Europe, 103 (24%) experienced sustained VA during a median follow-up of 5.02 (2.05-7.90) years following diagnosis of ARVC. External validation yielded good discrimination [C-index of 0.70 (95% confidence interval-CI 0.65-0.75)] and calibration slope of 1.01 (95% CI 0.99-1.03). Compared with the three published consensus-based decision algorithms for ICD use in ARVC (Heart Rhythm Society consensus on arrhythmogenic cardiomyopathy, International Task Force consensus statement on the treatment of ARVC, and American Heart Association guidelines for VA and SCD), the risk calculator performed better with a superior net clinical benefit below risk threshold of 35%.Conclusion Using a large independent cohort of patients, this study shows that the ARVC risk model provides good prognostic information and outperforms other published decision algorithms for ICD use. These findings support the use of the model to facilitate shared decision making regarding ICD implantation in the primary prevention of SCD in ARVC

    Polygenic risk scores in coronary artery disease

    No full text
    corecore