5 research outputs found

    Antibodies to infliximab and adalimumab in patients with rheumatoid arthritis in clinical remission:a cross-sectional study

    Get PDF
    Objective. To investigate if antibodies towards biological TNF-α inhibitors (anti-TNFi Abs) are present in patients with rheumatoid arthritis (RA) in clinical remission and to relate any anti-TNFi Abs to circulating level of TNF-α inhibitor (TNFi). Methods. Patients with RA, treated with infliximab or adalimumab, and in clinical remission (DAS28(CRP) < 2.6) were included from 6 out-patient clinics. In blood samples, presence of anti-TNFi Abs was determined by radioimmunoassay, and concentration of bioactive TNFi was measured by a cell-based reporter gene assay. Results. Anti-TNFi Abs were present in 8/44 patients (18%) treated with infliximab and 1/49 patients (2%) treated with adalimumab (p=0.012). In the former group, anti-TNFi Abs corresponded with low levels of TNFi (p=0.048). Anti-TNFi Ab-positive patients had shorter disease duration at initiation of TNFi therapy (p=0.023) but were similar for the rest of the compared parameters. Conclusions. In RA patients in clinical remission, anti-TNFi Abs occur frequently in patients treated with infliximab, while they occur rarely in patients treated with adalimumab. Presence of anti-infliximab Abs is accompanied by low or undetectable levels of infliximab. These data suggest that continued infliximab treatment may be redundant in a proportion of RA patients treated with infliximab and in clinical remission

    Medication before and after a spinal cord lesion

    No full text

    FinnGen provides genetic insights from a well-phenotyped isolated population.

    No full text
    Population isolates such as those in Finland benefit genetic research because deleterious alleles are often concentrated on a small number of low-frequency variants (0.1% ≤ minor allele frequency < 5%). These variants survived the founding bottleneck rather than being distributed over a large number of ultrarare variants. Although this effect is well established in Mendelian genetics, its value in common disease genetics is less explored1,2. FinnGen aims to study the genome and national health register data of 500,000 Finnish individuals. Given the relatively high median age of participants (63 years) and the substantial fraction of hospital-based recruitment, FinnGen is enriched for disease end points. Here we analyse data from 224,737 participants from FinnGen and study 15 diseases that have previously been investigated in large genome-wide association studies (GWASs). We also include meta-analyses of biobank data from Estonia and the United Kingdom. We identified 30 new associations, primarily low-frequency variants, enriched in the Finnish population. A GWAS of 1,932 diseases also identified 2,733 genome-wide significant associations (893 phenome-wide significant (PWS), P < 2.6 × 10-11) at 2,496 (771 PWS) independent loci with 807 (247 PWS) end points. Among these, fine-mapping implicated 148 (73 PWS) coding variants associated with 83 (42 PWS) end points. Moreover, 91 (47 PWS) had an allele frequency of <5% in non-Finnish European individuals, of which 62 (32 PWS) were enriched by more than twofold in Finland. These findings demonstrate the power of bottlenecked populations to find entry points into the biology of common diseases through low-frequency, high impact variants

    FinnGen provides genetic insights from a well-phenotyped isolated population

    No full text
    corecore