28,793 research outputs found

    A parallel algorithm for the enumeration of benzenoid hydrocarbons

    Full text link
    We present an improved parallel algorithm for the enumeration of fixed benzenoids B_h containing h hexagonal cells. We can thus extend the enumeration of B_h from the previous best h=35 up to h=50. Analysis of the associated generating function confirms to a very high degree of certainty that Bh∌AÎșh/hB_h \sim A \kappa^h /h and we estimate that the growth constant Îș=5.161930154(8)\kappa = 5.161930154(8) and the amplitude A=0.2808499(1)A=0.2808499(1).Comment: 14 pages, 6 figure

    Honeycomb lattice polygons and walks as a test of series analysis techniques

    Full text link
    We have calculated long series expansions for self-avoiding walks and polygons on the honeycomb lattice, including series for metric properties such as mean-squared radius of gyration as well as series for moments of the area-distribution for polygons. Analysis of the series yields accurate estimates for the connective constant, critical exponents and amplitudes of honeycomb self-avoiding walks and polygons. The results from the numerical analysis agree to a high degree of accuracy with theoretical predictions for these quantities.Comment: 16 pages, 9 figures, jpconf style files. Presented at the conference "Counting Complexity: An international workshop on statistical mechanics and combinatorics." In celebration of Prof. Tony Guttmann's 60th birthda

    Nonuniversal Critical Spreading in Two Dimensions

    Full text link
    Continuous phase transitions are studied in a two dimensional nonequilibrium model with an infinite number of absorbing configurations. Spreading from a localized source is characterized by nonuniversal critical exponents, which vary continuously with the density phi in the surrounding region. The exponent delta changes by more than an order of magnitude, and eta changes sign. The location of the critical point also depends on phi, which has important implications for scaling. As expected on the basis of universality, the static critical behavior belongs to the directed percolation class.Comment: 21 pages, REVTeX, figures available upon reques

    Coulomb and nuclear breakup of three-body halo nuclei

    Full text link
    We investigate dissociation reactions of loosely bound and spatially extended three-body systems. We formulate a practical method for simultaneous treatment of long-range Coulomb and short-range nuclear interactions. We use 6^6He (n+n+α\alpha) and 11^{11}Li (n+n+9^{9}Li) as examples and study the two-neutron separation cross sections as functions of target and beam energy. Individual Coulomb and nuclear as well as interference contributions are also extracted.Comment: 7 pages, 3 figures, 'epl.cls' style (also sent

    Perimeter Generating Functions For The Mean-Squared Radius Of Gyration Of Convex Polygons

    Full text link
    We have derived long series expansions for the perimeter generating functions of the radius of gyration of various polygons with a convexity constraint. Using the series we numerically find simple (algebraic) exact solutions for the generating functions. In all cases the size exponent Μ=1\nu=1.Comment: 8 pages, 1 figur

    A new transfer-matrix algorithm for exact enumerations: Self-avoiding polygons on the square lattice

    Full text link
    We present a new and more efficient implementation of transfer-matrix methods for exact enumerations of lattice objects. The new method is illustrated by an application to the enumeration of self-avoiding polygons on the square lattice. A detailed comparison with the previous best algorithm shows significant improvement in the running time of the algorithm. The new algorithm is used to extend the enumeration of polygons to length 130 from the previous record of 110.Comment: 17 pages, 8 figures, IoP style file

    Study of the one-dimensional off-lattice hot-monomer reaction model

    Full text link
    Hot monomers are particles having a transient mobility (a ballistic flight) prior to being definitely absorbed on a surface. After arriving at a surface, the excess energy coming from the kinetic energy in the gas phase is dissipated through degrees of freedom parallel to the surface plane. In this paper we study the hot monomer-monomer adsorption-reaction process on a continuum (off-lattice) one-dimensional space by means of Monte Carlo simulations. The system exhibits second-order irreversible phase transition between a reactive and saturated (absorbing) phases which belong to the directed percolation (DP) universality class. This result is interpreted by means of a coarse-grained Langevin description which allows as to extend the DP conjecture to transitions occurring in continuous media.Comment: 13 pages, 5 figures, final version to appear in J. Phys.

    Scaling function and universal amplitude combinations for self-avoiding polygons

    Full text link
    We analyze new data for self-avoiding polygons, on the square and triangular lattices, enumerated by both perimeter and area, providing evidence that the scaling function is the logarithm of an Airy function. The results imply universal amplitude combinations for all area moments and suggest that rooted self-avoiding polygons may satisfy a qq-algebraic functional equation.Comment: 9 page

    Design of a 3 GHz Accelerator Structure for the CLIC Test Facility (CTF 3) Drive Beam

    Get PDF
    For the CLIC two-beam scheme, a high-current, long-pulse drive beam is required for RF power generation. Taking advantage of the 3 GHz klystrons available at the LEP injector once LEP stops, a 180 MeV electron accelerator is being constructed for a nominal beam current of 3.5 A and 1.5 microsecond pulse length. The high current requires highly effective suppression of dipolar wakes. Two concepts are investigated for the accelerating structure design: the "Tapered Damped Structure" developed for the CLIC main beam, and the "Slotted Iris - Constant Aperture" structure. Both use 4 SiC loads per cell for effective higher-order mode damping. A full-size prototype of the TDS structure has been built and tested successfully at full power. A first prototype of the SICA structure is being built.Comment: Contribution to Linac 2000 Conference, TUA16 (Poster

    Numerical Study of a Field Theory for Directed Percolation

    Full text link
    A numerical method is devised for study of stochastic partial differential equations describing directed percolation, the contact process, and other models with a continuous transition to an absorbing state. Owing to the heightened sensitivity to fluctuationsattending multiplicative noise in the vicinity of an absorbing state, a useful method requires discretization of the field variable as well as of space and time. When applied to the field theory for directed percolation in 1+1 dimensions, the method yields critical exponents which compare well against accepted values.Comment: 18 pages, LaTeX, 6 figures available upon request LC-CM-94-00
    • 

    corecore