28,793 research outputs found
A parallel algorithm for the enumeration of benzenoid hydrocarbons
We present an improved parallel algorithm for the enumeration of fixed
benzenoids B_h containing h hexagonal cells. We can thus extend the enumeration
of B_h from the previous best h=35 up to h=50. Analysis of the associated
generating function confirms to a very high degree of certainty that and we estimate that the growth constant and the amplitude .Comment: 14 pages, 6 figure
Honeycomb lattice polygons and walks as a test of series analysis techniques
We have calculated long series expansions for self-avoiding walks and
polygons on the honeycomb lattice, including series for metric properties such
as mean-squared radius of gyration as well as series for moments of the
area-distribution for polygons. Analysis of the series yields accurate
estimates for the connective constant, critical exponents and amplitudes of
honeycomb self-avoiding walks and polygons. The results from the numerical
analysis agree to a high degree of accuracy with theoretical predictions for
these quantities.Comment: 16 pages, 9 figures, jpconf style files. Presented at the conference
"Counting Complexity: An international workshop on statistical mechanics and
combinatorics." In celebration of Prof. Tony Guttmann's 60th birthda
Nonuniversal Critical Spreading in Two Dimensions
Continuous phase transitions are studied in a two dimensional nonequilibrium
model with an infinite number of absorbing configurations. Spreading from a
localized source is characterized by nonuniversal critical exponents, which
vary continuously with the density phi in the surrounding region. The exponent
delta changes by more than an order of magnitude, and eta changes sign. The
location of the critical point also depends on phi, which has important
implications for scaling. As expected on the basis of universality, the static
critical behavior belongs to the directed percolation class.Comment: 21 pages, REVTeX, figures available upon reques
Coulomb and nuclear breakup of three-body halo nuclei
We investigate dissociation reactions of loosely bound and spatially extended
three-body systems. We formulate a practical method for simultaneous treatment
of long-range Coulomb and short-range nuclear interactions. We use He
(n+n+) and Li (n+n+Li) as examples and study the
two-neutron separation cross sections as functions of target and beam energy.
Individual Coulomb and nuclear as well as interference contributions are also
extracted.Comment: 7 pages, 3 figures, 'epl.cls' style (also sent
Perimeter Generating Functions For The Mean-Squared Radius Of Gyration Of Convex Polygons
We have derived long series expansions for the perimeter generating functions
of the radius of gyration of various polygons with a convexity constraint.
Using the series we numerically find simple (algebraic) exact solutions for the
generating functions. In all cases the size exponent .Comment: 8 pages, 1 figur
A new transfer-matrix algorithm for exact enumerations: Self-avoiding polygons on the square lattice
We present a new and more efficient implementation of transfer-matrix methods
for exact enumerations of lattice objects. The new method is illustrated by an
application to the enumeration of self-avoiding polygons on the square lattice.
A detailed comparison with the previous best algorithm shows significant
improvement in the running time of the algorithm. The new algorithm is used to
extend the enumeration of polygons to length 130 from the previous record of
110.Comment: 17 pages, 8 figures, IoP style file
Study of the one-dimensional off-lattice hot-monomer reaction model
Hot monomers are particles having a transient mobility (a ballistic flight)
prior to being definitely absorbed on a surface. After arriving at a surface,
the excess energy coming from the kinetic energy in the gas phase is dissipated
through degrees of freedom parallel to the surface plane. In this paper we
study the hot monomer-monomer adsorption-reaction process on a continuum
(off-lattice) one-dimensional space by means of Monte Carlo simulations. The
system exhibits second-order irreversible phase transition between a reactive
and saturated (absorbing) phases which belong to the directed percolation (DP)
universality class. This result is interpreted by means of a coarse-grained
Langevin description which allows as to extend the DP conjecture to transitions
occurring in continuous media.Comment: 13 pages, 5 figures, final version to appear in J. Phys.
Scaling function and universal amplitude combinations for self-avoiding polygons
We analyze new data for self-avoiding polygons, on the square and triangular
lattices, enumerated by both perimeter and area, providing evidence that the
scaling function is the logarithm of an Airy function. The results imply
universal amplitude combinations for all area moments and suggest that rooted
self-avoiding polygons may satisfy a -algebraic functional equation.Comment: 9 page
Design of a 3 GHz Accelerator Structure for the CLIC Test Facility (CTF 3) Drive Beam
For the CLIC two-beam scheme, a high-current, long-pulse drive beam is
required for RF power generation. Taking advantage of the 3 GHz klystrons
available at the LEP injector once LEP stops, a 180 MeV electron accelerator is
being constructed for a nominal beam current of 3.5 A and 1.5 microsecond pulse
length. The high current requires highly effective suppression of dipolar
wakes. Two concepts are investigated for the accelerating structure design: the
"Tapered Damped Structure" developed for the CLIC main beam, and the "Slotted
Iris - Constant Aperture" structure. Both use 4 SiC loads per cell for
effective higher-order mode damping. A full-size prototype of the TDS structure
has been built and tested successfully at full power. A first prototype of the
SICA structure is being built.Comment: Contribution to Linac 2000 Conference, TUA16 (Poster
Numerical Study of a Field Theory for Directed Percolation
A numerical method is devised for study of stochastic partial differential
equations describing directed percolation, the contact process, and other
models with a continuous transition to an absorbing state. Owing to the
heightened sensitivity to fluctuationsattending multiplicative noise in the
vicinity of an absorbing state, a useful method requires discretization of the
field variable as well as of space and time. When applied to the field theory
for directed percolation in 1+1 dimensions, the method yields critical
exponents which compare well against accepted values.Comment: 18 pages, LaTeX, 6 figures available upon request LC-CM-94-00
- âŠ