5,961 research outputs found

    Vacancy clustering and diffusion in silicon: Kinetic lattice Monte Carlo simulations

    Full text link
    Diffusion and clustering of lattice vacancies in silicon as a function of temperature, concentration, and interaction range are investigated by Kinetic Lattice Monte Carlo simulations. It is found that higher temperatures lead to larger clusters with shorter lifetimes on average, which grow by attracting free vacancies, while clusters at lower temperatures grow by aggregation of smaller clusters. Long interaction ranges produce enhanced diffusivity and fewer clusters. Greater vacancy concentrations lead to more clusters, with fewer free vacancies, but the size of the clusters is largely independent of concentration. Vacancy diffusivity is shown to obey power law behavior over time, and the exponent of this law is shown to increase with concentration, at fixed temperature, and decrease with temperature, at fixed concentration.Comment: 14 pages, 12 figures. To appear in Physical Review

    Fracture of Carbon Nanotube - Amorphous Carbon Composites: Molecular Modeling

    Get PDF
    Carbon nanotubes (CNTs) are promising candidates for use as reinforcements in next generation structural composite materials because of their extremely high specific stiffness and strength. They cannot, however, be viewed as simple replacements for carbon fibers because there are key differences between these materials in areas such as handling, processing, and matrix design. It is impossible to know for certain that CNT composites will represent a significant advance over carbon fiber composites before these various factors have been optimized, which is an extremely costly and time intensive process. This work attempts to place an upper bound on CNT composite mechanical properties by performing molecular dynamics simulations on idealized model systems with a reactive forcefield that permits modeling of both elastic deformations and fracture. Amorphous carbon (AC) was chosen for the matrix material in this work because of its structural simplicity and physical compatibility with the CNT fillers. It is also much stiffer and stronger than typical engineering polymer matrices. Three different arrangements of CNTs in the simulation cell have been investigated: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. The SWNT and MWNT array systems are clearly idealizations, but the SWNT bundle system is a step closer to real systems in which individual tubes aggregate into large assemblies. The effect of chemical crosslinking on composite properties is modeled by adding bonds between the CNTs and AC. The balance between weakening the CNTs and improving fiber-matrix load transfer is explored by systematically varying the extent of crosslinking. It is, of course, impossible to capture the full range of deformation and fracture processes that occur in real materials with even the largest atomistic molecular dynamics simulations. With this limitation in mind, the simulation results reported here provide a plausible upper limit on achievable CNT composite properties and yield some insight on the influence of processing conditions on the mechanical properties of CNT composites

    Modeling Chemical Reactions in Classical Molecular Dynamics Simulations

    Get PDF
    An algorithm capable of incorporating multi-step reaction mechanisms into atomistic molecular dynamics (MD) simulations using traditional fixed valence force fields is proposed and implemented within the framework of LAMMPS (Large-scale Atomic Molecular Massively Parallel Simulator). This extension, referred to as fix bond/react, enables bonding topology modifications during a running MD simulation using pre- and post-reaction bonding templates to carry out a pre-specified reaction. Candidate reactants are first identified by interatomic separation, followed by the application of a generalized topology matching algorithm to confirm they match the pre-reaction template. This is followed by a topology conversion to match the post-reaction template and a dynamic relaxation to minimize high energy configurations. Two case studies, the condensation polymerization of nylon 6,6 and the formation of a highly-crosslinked epoxy, are simulated to demonstrate the robustness, stability, and speed of the algorithm. Improvements which could increase its utility are discussed

    Toward Ultralight High Strength Structural Materials via Collapsed Carbon Nanotube Bonding

    Get PDF
    The growing commercial availability of carbon nanotube (CNT) macro-assemblies such as sheet and yarn is making their use in structural composite components increasingly feasible. However, the mechanical properties of these materials continue to trail those of state-of-the-art carbon fiber composites due to relatively weak inter-tube load transfer. Forming covalent links between adjacent CNTs promises to mitigate this problem, but it has proven difficult in practice to introduce them chemically within densified and aligned CNT materials due to their low permeability. To avoid this limitation, this work explores the combination of pulsed electrical current, temperature, and pressure to introduce inter-CNT bonds. Reactive molecular dynamics simulations identify the most probable locations, configurations, and conditions for inter-nanotube bonds to form. This process is shown to introduce covalent linkages within the CNT material that manifest as improved macroscale mechanical properties. The magnitude of this effect increases with increasing levels of prealignment of the CNT material, promising a new synthesis pathway to ultralight structural materials with specific strengths and stiffnesses exceeding 1 and 100 GPa/(g/cu.cm), respectively

    Comparing the Mechanical Response of Di-, Tri-, and Tetra-functional Resin Epoxies with Reactive Molecular Dynamics

    Get PDF
    The influence of monomer functionality on the mechanical properties of epoxies is studied using Molecular Dynamics (MD) with the Reax Force Field (ReaxFF). From deformation simulations, the Youngs modulus, yield point, and Poissons ratio are calculated and analyzed. The results demonstrate an increase in stiffness and yield strength with increasing resin functionality. Comparison between the network structures of distinct epoxies is further advanced by the Monomeric Degree Index (MDI). Experimental validation demonstrates the MD results correctly predict the relationship in Youngs moduli. Therefore, ReaxFF is confirmed to be a useful tool for studying the mechanical behavior of epoxies

    Observationally constrained modeling of sound in curved ocean internal waves: Examination of deep ducting and surface ducting at short range

    Get PDF
    Author Posting. © Acoustical Society of America, 2011. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 130 (2011): 1173-1187, doi:10.1121/1.3605565.A study of 400 Hz sound focusing and ducting effects in a packet of curved nonlinear internal waves in shallow water is presented. Sound propagation roughly along the crests of the waves is simulated with a three-dimensional parabolic equation computational code, and the results are compared to measured propagation along fixed 3 and 6 km source/receiver paths. The measurements were made on the shelf of the South China Sea northeast of Tung-Sha Island. Construction of the time-varying three-dimensional sound-speed fields used in the modeling simulations was guided by environmental data collected concurrently with the acoustic data. Computed three-dimensional propagation results compare well with field observations. The simulations allow identification of time-dependent sound forward scattering and ducting processes within the curved internal gravity waves. Strong acoustic intensity enhancement was observed during passage of high-amplitude nonlinear waves over the source/receiver paths, and is replicated in the model. The waves were typical of the region (35 m vertical displacement). Two types of ducting are found in the model, which occur asynchronously. One type is three-dimensional modal trapping in deep ducts within the wave crests (shallow thermocline zones). The second type is surface ducting within the wave troughs (deep thermocline zones).Grants from the Office of Naval Research funded this work. Use of the vessels Ocean Researcher I and Ocean Researcher II in this experiment was funded by the Taiwan National Science Council

    Effects of Atomic-Scale Structure on the Fracture Properties of Amorphous Carbon - Carbon Nanotube Composites

    Get PDF
    The fracture of carbon materials is a complex process, the understanding of which is critical to the development of next generation high performance materials. While quantum mechanical (QM) calculations are the most accurate way to model fracture, the fracture behavior of many carbon-based composite engineering materials, such as carbon nanotube (CNT) composites, is a multi-scale process that occurs on time and length scales beyond the practical limitations of QM methods. The Reax Force Field (ReaxFF) is capable of predicting mechanical properties involving strong deformation, bond breaking and bond formation in the classical molecular dynamics framework. This has been achieved by adding to the potential energy function a bond-order term that varies continuously with distance. The use of an empirical bond order potential, such as ReaxFF, enables the simulation of failure in molecular systems that are several orders of magnitude larger than would be possible in QM techniques. In this work, the fracture behavior of an amorphous carbon (AC) matrix reinforced with CNTs was modeled using molecular dynamics with the ReaxFF reactive forcefield. Care was taken to select the appropriate simulation parameters, which can be different from those required when using traditional fixed-bond force fields. The effect of CNT arrangement was investigated with three systems: a single-wall nanotube (SWNT) array, a multi-wall nanotube (MWNT) array, and a SWNT bundle system. For each arrangement, covalent bonds are added between the CNTs and AC, with crosslink fractions ranging from 0-25% of the interfacial CNT atoms. The SWNT and MWNT array systems represent ideal cases with evenly spaced CNTs; the SWNT bundle system represents a more realistic case because, in practice, van der Waals interactions lead to the agglomeration of CNTs into bundles. The simulation results will serve as guidance in setting experimental processing conditions to optimize the mechanical properties of CNT composites

    Mapping Rangeland Health Indicators in East Africa from 2000 to 2022

    Get PDF
    Tracking environmental change is important to ensure efficient and sustainable natural resources management. East Africa is dominated by arid and semi-arid rangeland systems, where extensive grazing of livestock represents the primary livelihood for most of the human population. Despite several mapping efforts, East Africa lacks accurate and reliable high-resolution rangeland health maps necessary for management, policy, and research purposes. Earth Observations offer the opportunity to assess spatiotemporal dynamics in rangeland health conditions at much higher spatial and temporal coverage than conventional approaches that rely on in-situ methods, while complimenting their certainty. Using machine learning-based classification and linear unmixing, this paper produced Landsat-based time series at 30 m spatial resolution for mapping of land cover classes (LCC) and vegetation fractional cover (VFC, including photosynthetic vegetation PV, non-photosynthetic vegetation NPV, and bare ground BG), two major data assets to derive metrics for rangeland health in East Africa. Due to scarcity of in-situ measurements in a large, remote and highly heterogeneous landscape, an algorithm was developed to combine very high-resolution WorldView-2 and -3 satellite imagery at < 2 m resolutions with a limited set of ground observations to generate reference labels across the study region. The LCC analysis yielded an overall accuracy of 0.856 using our validation dataset, with Kappa of 0.832; VFC, yielded R2 = 0.801, p < 2.2e-16, normalized root mean squared error (nRMSE) = 0.123. Our products represent the first multi-decadal high-resolution dataset specifically designed for mapping and monitoring rangelands health in East Africa including Kenya, Ethiopia and Somalia, covering a total area of 745,840 km2, dominated by arid and semi-arid extensive rangeland systems. These data can be valuable to a wide range of development, humanitarian, and ecological conservation efforts and are available at https://doi.org/10.5281/zenodo.7106166 (Soto et al., 2023) and Google Earth Engine (GEE; details in data availability section)

    Universal Vectorial and Ultrasensitive Nanomechanical Force Field Sensor

    Full text link
    Miniaturization of force probes into nanomechanical oscillators enables ultrasensitive investigations of forces on dimensions smaller than their characteristic length scale. Meanwhile it also unravels the force field vectorial character and how its topology impacts the measurement. Here we expose an ultrasensitive method to image 2D vectorial force fields by optomechanically following the bidimensional Brownian motion of a singly clamped nanowire. This novel approach relies on angular and spectral tomography of its quasi frequency-degenerated transverse mechanical polarizations: immersing the nanoresonator in a vectorial force field does not only shift its eigenfrequencies but also rotate eigenmodes orientation as a nano-compass. This universal method is employed to map a tunable electrostatic force field whose spatial gradients can even take precedence over the intrinsic nanowire properties. Enabling vectorial force fields imaging with demonstrated sensitivities of attonewton variations over the nanoprobe Brownian trajectory will have strong impact on scientific exploration at the nanoscale

    3D acoustic propagation through an estuarine salt wedge at low-to-mid-frequencies: Modeling and measurement

    Get PDF
    Author Posting. © Acoustical Society of America, 2019. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 146(3),(2019): 1888-1902, doi:10.1121/1.5125258.The estuarine salt wedge presents a dynamic and highly refractive waveguide, the acoustic propagation characteristics of which are controlled by the water column sound speed gradient and boundary interactions. Acoustically, the salt wedge consists of two isospeed layers separated by a thin, three-dimensional (3D), high-gradient layer. The behavior of a broadband (500–2000 Hz) acoustic field under the influence of an estuarine salt wedge in the Columbia River estuary is explored using two 3D acoustic propagation models: 3D rays and 3D parabolic equation. These model results are compared to data collected during the field experiment. Results demonstrate that the dominant physical mechanism controlling acoustic propagation in this waveguide shifts from 3D bottom scatter in a non-refractive waveguide (before the entrance of the salt wedge) to 3D acoustic refraction with minimal bottom interaction in a refractive waveguide (when the salt wedge occupies the acoustic transect). Vertical and horizontal refraction in the water column and out-of-plane scattering by the bottom are clearly evident at specific narrowband frequencies; however, these mechanisms contribute to, but do not account for, the total observed broadband transmission loss.Environmental input to the acoustic models included high resolution bathymetric survey data provided by Guy Gelfenbaum (USGS), and modeled temperature and salinity profiles of the water column provided by Antonio Baptista, Charles Seaton, and Paul Turner at CMOP. The authors thank Derek Olson (NPS) for invaluable assistance with running the 3DPE model on NPS HPC resources. This work was supported by the Office of Naval Research.2020-03-3
    • …
    corecore