28,487 research outputs found

    Ionization of Rydberg atoms in a low frequency field: modelling by maps of transition to chaotic behavior

    Full text link
    We investigate a microwave ionization of highly excited atom in a low frequency field and show that such a process may be studied on the bases of map for the electron energy change during the period of the electron motion between two subsequent passages at aphelion. Simple approximate criterion results to the threshold field for transition to chaotic behavior very close to the numerical results. We show that transition from adiabatic to chaotic ionization mechanism takes place when the field frequency to the electron's Kepler frequency ration approximately equals 0.1.Comment: 5 pages, LaTEX, 37Kb, 2 figures (compressed and uuencoded PostScript) included in text. To be published in Chaos: The interplay between stochastics, classics and quanta, Ed. by P. Garbaczewski, et al. Lecture notes in Physics, 1995

    Vanishing of Gravitational Particle Production in the Formation of Cosmic Strings

    Get PDF
    We consider the gravitationally induced particle production from the quantum vacuum which is defined by a free, massless and minimally coupled scalar field during the formation of a gauge cosmic string. Previous discussions of this topic estimate the power output per unit length along the string to be of the order of 106810^{68} ergs/sec/cm in the s-channel. We find that this production may be completely suppressed. A similar result is also expected to hold for the number of produced photons.Comment: 10 pages, Plain LaTex. Minor improvements. To appear in PR

    Insect pathogenic fungi in biological control: status and future challenges

    Get PDF
    In Europe, insect pathogenic fungi have in decades played a significant role in biological control of insects. With respect to the different strategies of biological control and with respects to the different genera of insect pathogenic fungi, the success and potential vary, however. Classical biological control: no strong indication of potential. Inundation and inoculation biological control: success stories with the genera Metarhizium, Beauveria, Isaria/Paecilomyces and Lecanicillium (previously Verticillium). However, the genotypes employed seem to include a narrow spectrum of the many potentially useful genotypes. Conservation biological control: Pandora and Entomophthora have a strong potential, but also Beauveria has a potential to be explored further. The main bottleneck for further exploitation of insect pathogenic fungi in biological control is the limited knowledge of host pathogen interaction at the fungal genotype level

    Phonon-induced quadrupolar ordering of the magnetic superconductor TmNi2_2B2_2C

    Get PDF
    We present synchrotron x-ray diffraction studies revealing that the lattice of thulium borocarbide is distorted below T_Q = 13.5 K at zero field. T_Q increases and the amplitude of the displacements is drastically enhanced, by a factor of 10 at 60 kOe, when a magnetic field is applied along [100]. The distortion occurs at the same wave vector as the antiferromagnetic ordering induced by the a-axis field. A model is presented that accounts for the properties of the quadrupolar phase and explains the peculiar behavior of the antiferromagnetic ordering previously observed in this compound.Comment: submitted to PR

    Self-organized Criticality and Absorbing States: Lessons from the Ising Model

    Full text link
    We investigate a suggested path to self-organized criticality. Originally, this path was devised to "generate criticality" in systems displaying an absorbing-state phase transition, but closer examination of the mechanism reveals that it can be used for any continuous phase transition. We used the Ising model as well as the Manna model to demonstrate how the finite-size scaling exponents depend on the tuning of driving and dissipation rates with system size.Our findings limit the explanatory power of the mechanism to non-universal critical behavior.Comment: 5 pages, 2 figures, REVTeX

    Braided Rivers and Superconducting Vortex Avalanches

    Full text link
    Magnetic vortices intermittently flow through preferred channels when they are forced in or out of a superconductor. We study this behavior using a cellular model, and find that the vortex flow can make braided rivers strikingly similar to aerial photographs of braided fluvial rivers, such as the Brahmaputra. By developing an analysis technique suitable for characterizing a self-affine (multi)fractal, the scaling properties of the braided vortex rivers in the model are compared with those of braided fluvial rivers. We suggest that avalanche dynamics leads to braiding in both cases.Comment: 4 pages, 3 figures. To appear in PR

    Observation of progressive motion of ac-driven solitons

    Full text link
    We report the first experimental observation of phase-locked motion of a topological soliton at a nonzero average velocity in a periodically modulated lossy medium, under the action of an ac force with no dc component [the effect was predicted by G. Filatrella, B.A. Malomed, and R.D. Parmentier, Phys. Lett. A 198, 43 (1995)]. The velocity is related by a resonant condition to the driving frequency. The observation is made in terms of the current-voltage, I(V), characteristics for a fluxon trapped in an annular Josephson junction placed into dc magnetic field. Large zero-crossing constant-voltage steps, exactly corresponding to the resonantly locked soliton motion at different orders of the resonance, are found on the experimental I(V) curves. A measured dependence of the size of the steps vs. the external magnetic field is in good agreement with predictions of an analytical model based on the balance equation for the fluxon's energy. The effect has a potential application as a low-frequency voltage standard. The work was supported by a grant from the German-Israeli Foundation.Comment: Physical Review B, in press (Rapid Communication

    Shell-Model Effective Operators for Muon Capture in ^{20}Ne

    Get PDF
    It has been proposed that the discrepancy between the partially-conserved axial-current prediction and the nuclear shell-model calculations of the ratio CP/CAC_P/C_A in the muon-capture reactions can be solved in the case of ^{28}Si by introducing effective transition operators. Recently there has been experimental interest in measuring the needed angular correlations also in ^{20}Ne. Inspired by this, we have performed a shell-model analysis employing effective transition operators in the shell-model formalism for the transition 20Ne(0g.s.+)+μ20F(1+;1.057MeV)+νμ^{20}Ne(0^+_{g.s.})+\mu^- \to ^{20}F(1^+; 1.057 MeV) + \nu_\mu. Comparison of the calculated capture rates with existing data supports the use of effective transition operators. Based on our calculations, as soon as the experimental anisotropy data becomes available, the limits for the ratio CP/CAC_P/ C_A can be extracted.Comment: 9 pages, 3 figures include

    Orientational phase transitions in anisotropic rare-earth magnets at low temperatures

    Full text link
    Orientational phase transitions are investigated within the Heisenberg model with single-site anisotropy. The temperature dependence of the cone angle is calculated within the spin-wave theory. The role of the quantum renormalizations of anisotropy constants is discussed. A comparison with the experimental data on the cone-plane orientational transition in holmium is performed.Comment: 9 pages, LaTeX, 3 figure

    Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond

    Get PDF
    We demonstrate a cavity-enhanced room-temperature magnetic field sensor based on nitrogen-vacancy centers in diamond. Magnetic resonance is detected using absorption of light resonant with the 1042 nm spin-singlet transition. The diamond is placed in an external optical cavity to enhance the absorption, and significant absorption is observed even at room temperature. We demonstrate a magnetic field sensitivity of 2.5 nT/sqrt(Hz), and project a photon shot-noise-limited sensitivity of 70 pT/sqrt(Hz) for a few mW of infrared light, and a quantum projection-noise-limited sensitivity of 250 fT/sqrt(Hz) for the sensing volume of 90 um x 90 um 200 um.Comment: main text 5 pages, supplementary material 3 page
    corecore