9 research outputs found

    Home noninvasive ventilatory support for patients with chronic obstructive pulmonary disease:patient selection and perspectives

    Get PDF
    Long-term or home mechanical noninvasive ventilation (Home-NIV) has become a well-established form of therapy over the last few decades for chronic hypercapnic COPD patients in European countries. However, meta-analyses and clinical guidelines do not recommend Home-NIV for COPD patients on a routine basis. In particular, there is ongoing debate about Home-NIV in chronic hypercapnic COPD regarding the overall effects, the most favorable treatment strategy, the selection of eligible patients, and the time point at which it is prescribed. The current review focuses on specific aspects of patient selection and discusses the various scientific as well as clinical-guided perspectives on Home-NIV in patients suffering from chronic hypercapnic COPD. In addition, special attention will be given to the topic of ventilator settings and interfaces

    Obesity hypoventilation syndrome treated with non-invasive ventilation:Is a switch to CPAP therapy feasible?

    Get PDF
    Background and objective: Obesity hypoventilation syndrome (OHS) can be treated with either continuous positive airway pressure (CPAP) or non-invasive ventilation (NIV) therapy; the device choice has important economic and operational implications. Methods: This multicentre interventional trial investigated the safety and short-term efficacy of switching stable OHS patients who were on successful NIV therapy for ≥3 months to CPAP therapy. Patients underwent an autotitrating CPAP night under polysomnography (PSG); if the ensuing parameters were acceptable, they were sent home on a fixed CPAP for a 4–6-week period. It was hypothesized that blood gas analysis, PSG parameters and lung function tests would remain unchanged. Results: A total of 42 OHS patients were recruited, of whom 37 patients were switched to CPAP therapy. All patients had a history of severe obstructive sleep apnoea syndrome; chronic obstructive pulmonary disease (COPD) (Global Initiative for Obstructive Lung Disease (GOLD) I/II) was present in 52%. Regarding the primary outcome, 30 of 42 patients (71%, 95% CI: 55–84%) maintained daytime partial pressure of carbon dioxide (PaCO2) levels ≤45 mm Hg after the home CPAP period. There was no further impairment in quality of life, sleep parameters or lung function. Interestingly, 24 patients (65%) preferred CPAP as their long-term therapy, despite the high pressure levels used (mean: 13.8 ± 1.8 mbar). After the CPAP period, 7 of 37 patients were categorized as CPAP failure, albeit only due to mild hypercapnia (mean: 47.9 ± 2.7 mm Hg). Conclusion: It is feasible to switch most stable OHS patients from NIV to CPAP therapy, a step that could significantly reduce health-related costs. The auto-adjusted CPAP device, used in combination with the analysis of the PSG and capnometry, is a valid titration method in OHS patients

    Clinical evidence for respiratory insufficiency type II predicts weaning failure in long-term ventilated, tracheotomised patients: a retrospective analysis

    No full text
    Abstract Background Patients who require a prolonged weaning process comprise a highly heterogeneous group of patients amongst whom the outcome differs significantly. The present study aimed to identify the factors that predict whether the outcome for prolonged weaning will be successful or unsuccessful. Methods Data from tracheotomised patients who underwent prolonged weaning on a specialised weaning unit were assessed retrospectively via an electronic and paper-bound patient chart. Factors for weaning success were analysed by univariate and multivariate analyses. Results Out of the 124 patients examined, 48.4% were successfully weaned (n = 60). Univariate analysis revealed that long-term home mechanical ventilation prior to current weaning episode; time between intubation and the first spontaneous breathing trial (SBT); time between intubation and the first SBT of less than 30 days; lower PaCO2 prior to, and at the end of, the first SBT; and lower pH values at the end of the first SBT were predictors for successful weaning. Following multivariate analysis, the absence of home mechanical ventilation prior to admission, a maximum time period of 30 days between intubation and the first SBT, and a non-hypercapnic PaCO2 value at the end of the first SBT were predictive of successful weaning. Conclusions The current analysis demonstrates that the evidence for respiratory insufficiency type II provided by clinical findings serves as a predictor of weaning failure

    Impact of High-Intensity-NIV on the heart in stable COPD: A randomised cross-over pilot study

    Get PDF
    Background: Although high-intensity non-invasive ventilation has been shown to improve outcomes in stable COPD, it may adversely affect cardiac performance. Therefore, the aims of the present pilot study were to compare cardiac and pulmonary effects of 6 weeks of low-intensity non-invasive ventilation and 6 weeks of high-intensity non-invasive ventilation in stable COPD patients. Methods: In a randomised crossover pilot feasibility study, the change in cardiac output after 6 weeks of each NIV mode compared to baseline was assessed with echocardiography in 14 severe stable COPD patients. Furthermore, CO during NIV, gas exchange, lung function, and health-related quality of life were investigated. Results: Three patients dropped out: two deteriorated on low-intensity non-invasive ventilation, and one presented with decompensated heart failure while on high-intensity non-invasive ventilation. Eleven patients were included in the analysis. In general, cardiac output and NTproBNP did not change, although individual effects were noticed, depending on the pressures applied and/or the co-existence of heart failure. High-intensity non-invasive ventilation tended to be more effective in improving gas exchange, but both modes improved lung function and the health-related quality of life. Conclusions: Long-term non-invasive ventilation with adequate pressure to improve gas exchange and health-related quality of life did not have an overall adverse effect on cardiac performance. Nevertheless, in patients with pre-existing heart failure, the application of very high inspiratory pressures might reduce cardiac output
    corecore