7 research outputs found

    The Complex Interplay of Pulmonary Kinetic Processes

    Get PDF
    The inhalation route is frequently used to administer drugs for the management of respiratory diseases such as asthma or chronic obstructive pulmonary disease. Compared with other routes of administration, inhalation offers a number of advantages in the treatment of these diseases. For example, via inhalation, a drug is directly delivered to the target organ, conferring high pulmonary drug concentrations and low systemic drug concentrations. Therefore, drug inhalation is typically associated with high pulmonary efficacy and minimal systemic side effects. The lung, as a target, represents an organ with a complex structure and multiple pulmonary-specific pharmacokinetic processes, including (1) drug particle/droplet deposition; (2) pulmonary drug dissolution; (3) mucociliary and macrophage clearance; (4) absorption to lung tissue; (5) pulmonary tissue retention and tissue metabolism; and (6) absorptive drug clearance to the systemic perfusion. In this review, we describe these pharmacokinetic processes and explain how they may be influenced by drug-, formulation- and device-, and patient-related factors. Furthermore, we highlight the complex interplay between these processes and describe, using the examples of inhaled albuterol, fluticasone propionate, budesonide, and olodaterol, how various sequential or parallel pulmonary processes should be considered in order to comprehend the pulmonary fate of inhaled drugs

    Inhaled Therapy in Respiratory Disease: The Complex Interplay of Pulmonary Kinetic Processes

    No full text
    The inhalation route is frequently used to administer drugs for the management of respiratory diseases such as asthma or chronic obstructive pulmonary disease. Compared with other routes of administration, inhalation offers a number of advantages in the treatment of these diseases. For example, via inhalation, a drug is directly delivered to the target organ, conferring high pulmonary drug concentrations and low systemic drug concentrations. Therefore, drug inhalation is typically associated with high pulmonary efficacy and minimal systemic side effects. The lung, as a target, represents an organ with a complex structure and multiple pulmonary-specific pharmacokinetic processes, including (1) drug particle/droplet deposition; (2) pulmonary drug dissolution; (3) mucociliary and macrophage clearance; (4) absorption to lung tissue; (5) pulmonary tissue retention and tissue metabolism; and (6) absorptive drug clearance to the systemic perfusion. In this review, we describe these pharmacokinetic processes and explain how they may be influenced by drug-, formulation- and device-, and patient-related factors. Furthermore, we highlight the complex interplay between these processes and describe, using the examples of inhaled albuterol, fluticasone propionate, budesonide, and olodaterol, how various sequential or parallel pulmonary processes should be considered in order to comprehend the pulmonary fate of inhaled drugs

    Inferring pulmonary exposure based on clinical PK data: accuracy and precision of model-based deconvolution methods

    No full text
    Determining and understanding the target-site exposure in clinical studies remains challenging. This is especially true for oral drug inhalation for local treatment, where the target-site is identical to the site of drug absorption, i.e., the lungs. Modeling and simulation based on clinical pharmacokinetic (PK) data may be a valid approach to infer the pulmonary fate of orally inhaled drugs, even without local measurements. In this work, a simulation-estimation study was systematically applied to investigate five published model structures for pulmonary drug absorption. First, these models were compared for structural identifiability and how choosing an inadequate model impacts the inference on pulmonary exposure. Second, in the context of the population approach both sequential and simultaneous parameter estimation methods after intravenous administration and oral inhalation were evaluated with typically applied models. With an adequate model structure and a well-characterized systemic PK after intravenous dosing, the error in inferring pulmonary exposure and retention times was less than twofold in the majority of evaluations. Whether a sequential or simultaneous parameter estimation was applied did not affect the inferred pulmonary PK to a relevant degree. One scenario in the population PK analysis demonstrated biased pulmonary exposure metrics caused by inadequate estimation of systemic PK parameters. Overall, it was demonstrated that empirical modeling of intravenous and inhalation PK datasets provided robust estimates regarding accuracy and bias for the pulmonary exposure and pulmonary retention, even in presence of the high variability after drug inhalation

    Towards a Quantitative Mechanistic Understanding of Localized Pulmonary Tissue Retention—A Combined In Vivo/In Silico Approach Based on Four Model Drugs

    No full text
    Increasing affinity to lung tissue is an important strategy to achieve pulmonary retention and to prolong the duration of effect in the lung. As the lung is a very heterogeneous organ, differences in structure and blood flow may influence local pulmonary disposition. Here, a novel lung preparation technique was employed to investigate regional lung distribution of four drugs (salmeterol, fluticasone propionate, linezolid, and indomethacin) after intravenous administration in rats. A semi-mechanistic model was used to describe the observed drug concentrations in the trachea, bronchi, and the alveolar parenchyma based on tissue specific affinities (Kp) and blood flows. The model-based analysis was able to explain the pulmonary pharmacokinetics (PK) of the two neutral and one basic model drugs, suggesting up to six-fold differences in Kp between trachea and alveolar parenchyma for salmeterol. Applying the same principles, it was not possible to predict the pulmonary PK of indomethacin, indicating that acidic drugs might show different pulmonary PK characteristics. The separate estimates for local Kp, tracheal and bronchial blood flow were reported for the first time. This work highlights the importance of lung physiology- and drug-specific parameters for regional pulmonary tissue retention. Its understanding is key to optimize inhaled drugs for lung diseases

    Multi-task ADME/PK Prediction at Industrial Scale: Leveraging Large and Diverse Experimental Datasets

    No full text
    ADME (Absorption, Distribution, Metabolism, Excretion) properties are key parameters to judge whether a drug candidate exhibits a desired pharmacokinetic (PK) profile. In this study, we tested multi-task machine learning (ML) models to predict ADME and animal PK endpoints trained on in-house data generated at Boehringer Ingelheim. Models were evaluated both at the design stage of a compound (i.e., no experimental data of test compounds available) and at testing stage when a particular assay would be conducted (i.e., experimental data of earlier conducted assays may be available). Using realistic time-splits, we found a clear benefit in performance of multi-task graph-based neural network models over single-task models, which was even stronger when experimental data of earlier assays is available. In an attempt to explain the success of multi-task models, we found that especially endpoints with the largest numbers of data points (physicochemical endpoints, clearance in microsomes) are responsible for increased predictivity in more complex ADME and PK endpoints. In summary, our study provides insight into how data for multiple ADME/PK endpoints in a pharmaceutical company can be best leveraged to optimize predictivity of ML models

    EVALUATING PREDICTION METHODS FOR GLOMERULAR FILTRATION TO OPTIMISE DRUG DOSES IN OBESE AND NON‐OBESE PATIENTS

    Get PDF
    The most suitable method for predicting the glomerular filtration rate (GFR) in obesity is currently debated. Therefore, multiple GFR/creatinine clearance prediction methods were applied to (morbidly) obese and non-obese patients ranging from moderate renal impairment to glomerular hyperfiltration and their predictions were rated based on observed fosfomycin pharmacokinetics, as model drug being exclusively eliminated via glomerular filtration. The GFR/creatinine clearance predictions via the CKD-EPI, MDRD (indexed and de-indexed by body surface area), and creatinine clearance via the Cockcroft-Gault formula (CLCRCG ) using different body size descriptors were compared to the fosfomycin clearance (CLFOF ) from 30 surgical patients (BMI=20.1-52.0 kg·m-2 ), receiving 8000 mg as intravenous infusion. The concordance between CLFOF and creatinine clearance predictions was highest for CLCRCG employing either ideal body weight (IBW) or adjusted body weight (if body mass >1.3·IBW) (CLCRCG_ABW-Schwartz , concordance-correlation-coefficient [95% CI=0.474 [0.156; 0.703], CCC) and GFR predictions via the de-indexed MDRD equation (CCC=0.452 [0.137; 0.685]). The proportion of predicted GFR values within ±30% of the observed CLFOF (P30 =72.3%-76.7%) was only marginally lower than the reported P30 in the original CKD-EPI and MDRD publications (P30 =84.1%-90.0%). This analysis represents a successful proof-of-concept for evaluating GFR/creatinine clearance prediction methods: Across all BMI-classes CLCRCG_ABW-Schwartz or the de-indexed MDRD were most suitable for predicting creatinine clearance/GFR also in (morbidly) obese, CKD stage <3B individuals in therapeutic use. Their application is proposed in optimising doses for vital therapies in obese patients requiring monitoring of renal function (e.g. methotrexate dosing)
    corecore