24 research outputs found

    Real structure of lattice matched GaAs-Fe3Si core-shell nanowires

    Full text link
    GaAs nanowires and GaAs-Fe3Si core-shell nanowire structures were grown by molecular-beam epitaxy on oxidized Si(111) substrates and characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). Ga droplets were formed on the oxide surface, and the semiconducting GaAs nanowires grew epitaxially via the vapor-liquid-solid mechanism as single-crystals from holes in the oxide film. We observed two stages of growth of the GaAs nanowires, first the regular growth and second the residual growth after the Ga supply was finished. The magnetic Fe3Si shells were deposited in an As-free chamber. They completely cover the GaAs cores although they consist of small grains. High-resolution TEM micrographs depict the differently oriented grains in the Fe3Si shells. Selected area diffraction of electrons and XRD gave further evidence that the shells are textured and not single crystals. Facetting of the shells was observed, which lead to thickness inhomogeneities of the shells.Comment: 15 pages, 8 figure

    Magnetic properties of GaAs-Fe3Si core-shell nanowires — A comparison of ensemble and single nanowire investigation

    Get PDF
    On the basis of semiconductor-ferromagnet GaAs-Fe3Si core-shell nanowires (Nws) we compare the facilities of magnetic Nw ensemble measurements by superconducting quantum interference device magnetometry versus investigations on single Nws by magnetic force microscopy and computational micromagnetic modeling. Where a careful analysis of ensemble measurements backed up by transmission electron microscopy gave no insights on the properties of the Nw shells, single Nw investigation turned out to be absolutely essential

    Diffraction at GaAs/Fe3_{3}Si core/shell nanowires: the formation of nanofacets

    Get PDF
    GaAs/Fe3_{3}Si core/shell nanowire structures were fabricated by molecular-beam epitaxy on oxidized Si(111) substrates and investigated by synchrotron x-ray diffraction. The surfaces of the Fe3_3Si shells exhibit nanofacets. These facets consist of well pronounced Fe3_3Si{111} planes. Density functional theory reveals that the Si-terminated Fe3_3Si{111} surface has the lowest energy in agreement with the experimental findings. We can analyze the x-ray diffuse scattering and diffraction of the ensemble of nanowires avoiding the signal of the substrate and poly-crystalline films located between the wires. Fe3_3Si nanofacets cause streaks in the x-ray reciprocal space map rotated by an azimuthal angle of 30{\deg} compared with those of bare GaAs nanowires. In the corresponding TEM micrograph the facets are revealed only if the incident electron beam is oriented along [11‾\overline{1}0] in accordance with the x-ray results. Additional maxima in the x-ray scans indicate the onset of chemical reactions between Fe3_{3}Si shells and GaAs cores occurring at increased growth temperatures.Comment: 15 pages, 5 figure
    corecore