35 research outputs found

    Real-Space Bonding Indicator Analysis of the Donor–Acceptor Complexes X<sub>3</sub>BNY<sub>3</sub>, X<sub>3</sub>AlNY<sub>3</sub>, X<sub>3</sub>BPY<sub>3</sub>, and X<sub>3</sub>AlPY<sub>3</sub> (X, Y = H, Me, Cl)

    No full text
    Calculations of real-space bonding indicators (RSBI) derived from Atoms-In-Molecules (AIM), Electron Localizability Indicator (ELI-D), Non-Covalent Interactions index (NCI), and Density Overlap Regions Indicator (DORI) toolkits for a set of 36 donor–acceptor complexes X<sub>3</sub>BNY<sub>3</sub> (<b>1</b>, <b>1a</b>–<b>1h</b>), X<sub>3</sub>AlNY<sub>3</sub> (<b>2</b>, <b>2a</b>–<b>2h</b>), X<sub>3</sub>BPY<sub>3</sub> (<b>3</b>, <b>3a</b>–<b>3h</b>), and X<sub>3</sub>AlPY<sub>3</sub> (<b>4</b>, <b>4a</b>–<b>4h</b>) reveal that the donor–acceptor bonds comprise covalent and ionic interactions in varying extents (X = Y = H for <b>1</b>–<b>4</b>; X = H, Y = Me for <b>1a</b>–<b>4a</b>; X = H, Y = Cl for <b>1b</b>–<b>4b</b>; X = Me, Y = H for <b>1c</b>–<b>4c</b>; X, Y = Me for <b>1d</b>–<b>4d</b>; X = Me, Y = Cl for <b>1e</b>–<b>4e</b>; X = Cl, Y = H for <b>1f</b>–<b>4f</b>; X = Cl, Y = Me for <b>1g</b>–<b>4g</b>; X, Y = Cl for <b>1h</b>–<b>4h</b>). The phosphinoboranes X<sub>3</sub>BPY<sub>3</sub> (<b>3</b>, <b>3a</b>–<b>3h</b>) in general and Cl<sub>3</sub>BPMe<sub>3</sub> (<b>3f</b>) in particular show the largest covalent contributions and the least ionic contributions. The aminoalanes X<sub>3</sub>AlNY<sub>3</sub> (<b>2</b>, <b>2a</b>–<b>2h</b>) in general and Me<sub>3</sub>AlNCl<sub>3</sub> (<b>2e</b>) in particular show the least covalent contributions and the largest ionic contributions. The aminoboranes X<sub>3</sub>BNY<sub>3</sub> (<b>1</b>, <b>1a</b>–<b>1h</b>) and the phosphinoalanes X<sub>3</sub>AlPY<sub>3</sub> (<b>4</b>, <b>4a</b>–<b>4h</b>) are midway between phosphinoboranes and aminoalanes. The degree of covalency and ionicity correlates with the electronegativity difference BP (<i>ΔEN</i> = 0.15) < AlP (<i><i>ΔEN</i></i> = 0.58) < BN (ΔEN = 1.00) < AlN (<i>ΔEN</i> = 1.43) and a previously published energy decomposition analysis (EDA). To illustrate the importance of both contributions in Lewis formula representations, two resonance formulas should be given for all compounds, namely, the canonical form with formal charges denoting covalency and the arrow notation pointing from the donor to the acceptor atom to emphasis ionicity. If the Lewis formula mainly serves to show the atomic connectivity, the most significant should be shown. Thus, it is legitimate to present aminoalanes using arrows; however, for phosphinoboranes the canonical form with formal charges is more appropriate

    Real-Space Bonding Indicator Analysis of the Donor–Acceptor Complexes X<sub>3</sub>BNY<sub>3</sub>, X<sub>3</sub>AlNY<sub>3</sub>, X<sub>3</sub>BPY<sub>3</sub>, and X<sub>3</sub>AlPY<sub>3</sub> (X, Y = H, Me, Cl)

    No full text
    Calculations of real-space bonding indicators (RSBI) derived from Atoms-In-Molecules (AIM), Electron Localizability Indicator (ELI-D), Non-Covalent Interactions index (NCI), and Density Overlap Regions Indicator (DORI) toolkits for a set of 36 donor–acceptor complexes X<sub>3</sub>BNY<sub>3</sub> (<b>1</b>, <b>1a</b>–<b>1h</b>), X<sub>3</sub>AlNY<sub>3</sub> (<b>2</b>, <b>2a</b>–<b>2h</b>), X<sub>3</sub>BPY<sub>3</sub> (<b>3</b>, <b>3a</b>–<b>3h</b>), and X<sub>3</sub>AlPY<sub>3</sub> (<b>4</b>, <b>4a</b>–<b>4h</b>) reveal that the donor–acceptor bonds comprise covalent and ionic interactions in varying extents (X = Y = H for <b>1</b>–<b>4</b>; X = H, Y = Me for <b>1a</b>–<b>4a</b>; X = H, Y = Cl for <b>1b</b>–<b>4b</b>; X = Me, Y = H for <b>1c</b>–<b>4c</b>; X, Y = Me for <b>1d</b>–<b>4d</b>; X = Me, Y = Cl for <b>1e</b>–<b>4e</b>; X = Cl, Y = H for <b>1f</b>–<b>4f</b>; X = Cl, Y = Me for <b>1g</b>–<b>4g</b>; X, Y = Cl for <b>1h</b>–<b>4h</b>). The phosphinoboranes X<sub>3</sub>BPY<sub>3</sub> (<b>3</b>, <b>3a</b>–<b>3h</b>) in general and Cl<sub>3</sub>BPMe<sub>3</sub> (<b>3f</b>) in particular show the largest covalent contributions and the least ionic contributions. The aminoalanes X<sub>3</sub>AlNY<sub>3</sub> (<b>2</b>, <b>2a</b>–<b>2h</b>) in general and Me<sub>3</sub>AlNCl<sub>3</sub> (<b>2e</b>) in particular show the least covalent contributions and the largest ionic contributions. The aminoboranes X<sub>3</sub>BNY<sub>3</sub> (<b>1</b>, <b>1a</b>–<b>1h</b>) and the phosphinoalanes X<sub>3</sub>AlPY<sub>3</sub> (<b>4</b>, <b>4a</b>–<b>4h</b>) are midway between phosphinoboranes and aminoalanes. The degree of covalency and ionicity correlates with the electronegativity difference BP (<i>ΔEN</i> = 0.15) < AlP (<i><i>ΔEN</i></i> = 0.58) < BN (ΔEN = 1.00) < AlN (<i>ΔEN</i> = 1.43) and a previously published energy decomposition analysis (EDA). To illustrate the importance of both contributions in Lewis formula representations, two resonance formulas should be given for all compounds, namely, the canonical form with formal charges denoting covalency and the arrow notation pointing from the donor to the acceptor atom to emphasis ionicity. If the Lewis formula mainly serves to show the atomic connectivity, the most significant should be shown. Thus, it is legitimate to present aminoalanes using arrows; however, for phosphinoboranes the canonical form with formal charges is more appropriate

    Bis(<i>m</i>‑terphenyl)silanes

    No full text
    The synthesis and full characterization of the first bis­(<i>m</i>-terphenyl)­silanes, namely, (2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub>SiF<sub>2</sub>, (2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub>SiHF, and (2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>)<sub>2</sub>SiH<sub>2</sub>, is reported

    Concomitant Reactivity of the <i>m</i>-Terphenylindium Dihydroxide [2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>In(OH)<sub>2</sub>]<sub>4</sub> toward Carbon Dioxide and Ethylene Glycol

    No full text
    The stepwise reaction of [2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>In­(OH)<sub>2</sub>]<sub>4</sub> with carbon dioxide and ethylene glycol proceeded with the formation of (2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>In)<sub>4</sub>­(CO<sub>3</sub>)<sub>2</sub>(OH)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub> (<b>1</b>) and (2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>In)<sub>4</sub>(OCH<sub>2</sub>CH<sub>2</sub>O)<sub>2</sub>(OH)<sub>4</sub> (<b>2</b>), respectively, and eventually produced (2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>In)<sub>4</sub>(CO<sub>3</sub>)<sub>2</sub>­(OCH<sub>2</sub>CH<sub>2</sub>OH)<sub>2</sub>(OH)<sub>2</sub> (<b>3</b>). Attempts to liberate ethylene carbonate upon heating of <b>3</b> were unsuccessful

    Synthesis and Structure of an Intramolecularly Coordinated Diaryltelluronic Acid and Its Dimethyl Ester

    No full text
    The oxidation of the telluroxane cluster (8-Me<sub>2</sub>NC<sub>10</sub>H<sub>6</sub>Te)<sub>6</sub>O<sub>8</sub>(OH)<sub>2</sub> (<b>4</b>) or the diaryl ditelluride (8-Me<sub>2</sub>NC<sub>10</sub>H<sub>6</sub>Te)<sub>2</sub> (<b>7</b>) using H<sub>2</sub>O<sub>2</sub> provided the diarylditelluronic acid [8-Me<sub>2</sub>NC<sub>10</sub>H<sub>6</sub>Te­(O)­(OH)<sub>2</sub>]<sub>2</sub>(O) (<b>6</b>), which is the second member of this compound class and the first one to contain an intramolecularly coordinated substituent. Attempts at recrystallizing <b>6</b> from Methanol provided the partial ester [8-Me<sub>2</sub>NC<sub>10</sub>H<sub>6</sub>Te­(O)­(OH)­(OMe)]<sub>2</sub>(O) (<b>8</b>). In addition structural motifs of known diaryltelluronic acids were compared using DFT calculations

    Polyfluorinated Functionalized <i>m</i>‑Terphenyls. New Substituents and Ligands in Organometallic Synthesis

    No full text
    The synthesis and structural characterization of polyfluorinated arenes 2,4,6-(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>C<sub>6</sub>H<sub>2</sub>X and 2,6-(C<sub>6</sub>F<sub>5</sub>)<sub>2</sub>-4-BrC<sub>6</sub>H<sub>2</sub>X (X = NO<sub>2</sub>, Cl, Br) obtained in the Ullmann-type cross coupling reaction is reported. The nitro derivatives were reduced to the aromatic amines. The α-diimine [2,4,6-(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>C<sub>6</sub>H<sub>2</sub>NCMe]<sub>2</sub> and 2,4,6-(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>C<sub>6</sub>H<sub>2</sub>I were obtained in condensation and Sandmeyer reactions, respectively, from the corresponding amine. The syntheses of 2,4,6-(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>C<sub>6</sub>H<sub>2</sub>NHC­(O)­H, 2,4,6-(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>C<sub>6</sub>H<sub>2</sub>NC, and 2,4,6-(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>C<sub>6</sub>H<sub>2</sub>Si­(X)­Me<sub>2</sub> (X = H, F, Cl) are also described

    Concomitant Reactivity of the <i>m</i>-Terphenylindium Dihydroxide [2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>In(OH)<sub>2</sub>]<sub>4</sub> toward Carbon Dioxide and Ethylene Glycol

    No full text
    The stepwise reaction of [2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>In­(OH)<sub>2</sub>]<sub>4</sub> with carbon dioxide and ethylene glycol proceeded with the formation of (2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>In)<sub>4</sub>­(CO<sub>3</sub>)<sub>2</sub>(OH)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub> (<b>1</b>) and (2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>In)<sub>4</sub>(OCH<sub>2</sub>CH<sub>2</sub>O)<sub>2</sub>(OH)<sub>4</sub> (<b>2</b>), respectively, and eventually produced (2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>In)<sub>4</sub>(CO<sub>3</sub>)<sub>2</sub>­(OCH<sub>2</sub>CH<sub>2</sub>OH)<sub>2</sub>(OH)<sub>2</sub> (<b>3</b>). Attempts to liberate ethylene carbonate upon heating of <b>3</b> were unsuccessful

    Concomitant Reactivity of the <i>m</i>-Terphenylindium Dihydroxide [2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>In(OH)<sub>2</sub>]<sub>4</sub> toward Carbon Dioxide and Ethylene Glycol

    No full text
    The stepwise reaction of [2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>In­(OH)<sub>2</sub>]<sub>4</sub> with carbon dioxide and ethylene glycol proceeded with the formation of (2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>In)<sub>4</sub>­(CO<sub>3</sub>)<sub>2</sub>(OH)<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub> (<b>1</b>) and (2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>In)<sub>4</sub>(OCH<sub>2</sub>CH<sub>2</sub>O)<sub>2</sub>(OH)<sub>4</sub> (<b>2</b>), respectively, and eventually produced (2,6-Mes<sub>2</sub>C<sub>6</sub>H<sub>3</sub>In)<sub>4</sub>(CO<sub>3</sub>)<sub>2</sub>­(OCH<sub>2</sub>CH<sub>2</sub>OH)<sub>2</sub>(OH)<sub>2</sub> (<b>3</b>). Attempts to liberate ethylene carbonate upon heating of <b>3</b> were unsuccessful

    Intramolecularly Coordinated (6-(Diphenylphosphino)acenaphth-5-yl)stannanes. Repulsion vs Attraction of P- and Sn-Containing Substituents in the <i>peri</i> Positions

    No full text
    The intramolecularly coordinated (6-(diphenylphosphino)­acenaphth-5-yl)­stannanes ArSnBu<sub>3</sub> (<b>1</b>), ArSnPh<sub>3</sub> (<b>2</b>), ArSnPh<sub>2</sub>Cl (<b>3</b>), ArSnPhCl<sub>2</sub> (<b>4</b>), ArSnCl<sub>3</sub> (<b>5</b>), Ar<sub>2</sub>SnCl<sub>2</sub> (<b>6</b>), ArSnPh<sub>2</sub>O<sub>3</sub>SCF<sub>3</sub> (<b>7</b>), and ArSnPh<sub>2</sub>F (<b>8</b>) were synthesized and fully characterized by multinuclear NMR spectroscopy (<sup>119</sup>Sn, <sup>31</sup>P, <sup>19</sup>F, <sup>13</sup>C, <sup>1</sup>H) and X-ray crystallography (Ar = 6-Ph<sub>2</sub>P-Ace-5-). Due to the different substituents, the Lewis acidities of the Sn atoms of <b>1</b>–<b>8</b> vary substantially, which is reflected in the different P–Sn <i>peri</i> distances lying in the range from 2.7032(9) to 3.332(2) Å. In MeCN, <b>7</b> undergoes electrolytic dissociation into solvated triarylstannyl cations and triflate anions. The gas-phase structures of <b>2</b>–<b>5</b>, <b>8</b>, and the triarylstannyl cations ArPh<sub>2</sub>Sn<sup>+</sup> (<b>7a</b>) and [ArPh<sub>2</sub>Sn·NCMe]<sup>+</sup> (<b>7b</b>) were obtained by geometry optimization at the B3PW91/TZ level of theory. A detailed analysis of a set of real-space bonding indicators (RSBI) derived from the electron and pair densities following the atoms in molecules (AIM) and electron localizability indicator (ELI-D) topological approaches, respectively, uncovers the Sn–P <i>peri</i> interaction in <b>2</b> to be in the border regime between nonbonding and weakly ionic. With an increasing number of Cl atoms attached to the Sn atom, the Sn–P bond becomes considerably shorter and exhibits a decreasingly polar covalent interaction. As expected, this trend is significantly enhanced for the Sn–P interactions in the charged compounds <b>7a</b>,<b>b</b>. The Sn–P bond properties of <b>8</b>, however, very much resemble those of <b>3</b>, which means that the electronic impact of the F atom in the axial position is comparable to that of the axial Cl atom

    <i>Peri</i>-Substituted (Ace)Naphthylphosphinoboranes. (Frustrated) Lewis Pairs

    No full text
    The synthesis and molecular structures of 1-(diphenylphosphino)-8-naphthyldimesitylborane (<b>1</b>) and 5-(diphenylphosphino)-6-acenaphthyldimesitylborane (<b>2</b>) are reported. The experimentally determined P–B <i>peri</i> distances of 2.162(2) and 3.050(3) Å allow <b>1</b> and <b>2</b> to be classified as regular and frustrated Lewis pairs. The electronic characteristics of the (non)­bonding P–B contacts are determined by analysis of a set of real-space bonding indicators (RSBIs) derived from the theoretically calculated electron and pair densities. These densities are analyzed utilizing the atoms-in-molecules (AIM), stockholder, and electron-localizability-indicator (ELI-D) space partitioning schemes. The recently introduced mapping of the electron localizability on the ELI-D basin surfaces is also applied. All RSBIs clearly discriminate the bonding P–B contact in <b>1</b> from the nonbonding P–B contact in <b>2</b>, which is due to the fact that the acenaphthene framework is rather rigid, whereas the naphthyl framework shows sufficient conformational flexibility, allowing shorter <i>peri</i> interations. The results are compared to the previously known prototypical phosphinoborane Ph<sub>3</sub>PB­(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub>, which serves as a reference for a bonding P–B interaction. The most prominent features of the nonbonding P–B contact in <b>2</b> are the lack of an AIM bond critical point, the unaffected Hirshfeld surfaces of the P and B atomic fragments, and the negligible penetration of the electron population of the ELI-D lone pair basin of the P atom into the AIM B atomic basin
    corecore