568 research outputs found
A Demonstration of LISA Laser Communication
Over the past few years questions have been raised concerning the use of
laser communications links between sciencecraft to transmit phase information
crucial to the reduction of laser frequency noise in the LISA science
measurement. The concern is that applying medium frequency phase modulations to
the laser carrier could compromise the phase stability of the LISA fringe
signal. We have modified the table-top interferometer presented in a previous
article by applying phase modulations to the laser beams in order to evaluate
the effects of such modulations on the LISA science fringe signal. We have
demonstrated that the phase resolution of the science signal is not degraded by
the presence of medium frequency phase modulations.Comment: minor corrections found in the CQG versio
Demonstration of the Zero-Crossing Phasemeter with a LISA Test-bed Interferometer
The Laser Interferometer Space Antenna (LISA) is being designed to detect and
study in detail gravitational waves from sources throughout the Universe such
as massive black hole binaries. The conceptual formulation of the LISA
space-borne gravitational wave detector is now well developed. The
interferometric measurements between the sciencecraft remain one of the most
important technological and scientific design areas for the mission.
Our work has concentrated on developing the interferometric technologies to
create a LISA-like optical signal and to measure the phase of that signal using
commercially available instruments. One of the most important goals of this
research is to demonstrate the LISA phase timing and phase reconstruction for a
LISA-like fringe signal, in the case of a high fringe rate and a low signal
level. We present current results of a test-bed interferometer designed to
produce an optical LISA-like fringe signal previously discussed in the
literature.Comment: find minor corrections in the CQG versio
Readout for intersatellite laser interferometry: Measuring low frequency phase fluctuations of HF signals with microradian precision
Precision phase readout of optical beat note signals is one of the core
techniques required for intersatellite laser interferometry. Future space based
gravitational wave detectors like eLISA require such a readout over a wide
range of MHz frequencies, due to orbit induced Doppler shifts, with a precision
in the order of at frequencies between
and . In this paper, we present phase
readout systems, so-called phasemeters, that are able to achieve such
precisions and we discuss various means that have been employed to reduce noise
in the analogue circuit domain and during digitisation. We also discuss the
influence of some non-linear noise sources in the analogue domain of such
phasemeters. And finally, we present the performance that was achieved during
testing of the elegant breadboard model of the LISA phasemeter, that was
developed in the scope of an ESA technology development activity.Comment: submitted to Review of Scientific Instruments on April 30th 201
Conformal mechanics inspired by extremal black holes in d=4
A canonical transformation which relates the model of a massive relativistic
particle moving near the horizon of an extremal black hole in four dimensions
and the conventional conformal mechanics is constructed in two different ways.
The first approach makes use of the action-angle variables in the angular
sector. The second scheme relies upon integrability of the system in the sense
of Liouville.Comment: V2: presentation improved, new material and references added; the
version to appear in JHE
A Path Algorithm for Constrained Estimation
Many least squares problems involve affine equality and inequality
constraints. Although there are variety of methods for solving such problems,
most statisticians find constrained estimation challenging. The current paper
proposes a new path following algorithm for quadratic programming based on
exact penalization. Similar penalties arise in regularization in model
selection. Classical penalty methods solve a sequence of unconstrained problems
that put greater and greater stress on meeting the constraints. In the limit as
the penalty constant tends to , one recovers the constrained solution.
In the exact penalty method, squared penalties are replaced by absolute value
penalties, and the solution is recovered for a finite value of the penalty
constant. The exact path following method starts at the unconstrained solution
and follows the solution path as the penalty constant increases. In the
process, the solution path hits, slides along, and exits from the various
constraints. Path following in lasso penalized regression, in contrast, starts
with a large value of the penalty constant and works its way downward. In both
settings, inspection of the entire solution path is revealing. Just as with the
lasso and generalized lasso, it is possible to plot the effective degrees of
freedom along the solution path. For a strictly convex quadratic program, the
exact penalty algorithm can be framed entirely in terms of the sweep operator
of regression analysis. A few well chosen examples illustrate the mechanics and
potential of path following.Comment: 26 pages, 5 figure
Psychometric precision in phenotype definition is a useful step in molecular genetic investigation of psychiatric disorders
Affective disorders are highly heritable, but few genetic risk variants have been consistently replicated in molecular genetic association studies. The common method of defining psychiatric phenotypes in molecular genetic research is either a summation of symptom scores or binary threshold score representing the risk of diagnosis. Psychometric latent variable methods can improve the precision of psychiatric phenotypes, especially when the data structure is not straightforward. Using data from the British 1946 birth cohort, we compared summary scores with psychometric modeling based on the General Health Questionnaire (GHQ-28) scale for affective symptoms in an association analysis of 27 candidate genes (249 single-nucleotide polymorphisms (SNPs)). The psychometric method utilized a bi-factor model that partitioned the phenotype variances into five orthogonal latent variable factors, in accordance with the multidimensional data structure of the GHQ-28 involving somatic, social, anxiety and depression domains. Results showed that, compared with the summation approach, the affective symptoms defined by the bi-factor psychometric model had a higher number of associated SNPs of larger effect sizes. These results suggest that psychometrically defined mental health phenotypes can reflect the dimensions of complex phenotypes better than summation scores, and therefore offer a useful approach in genetic association investigations
Measuring gravitational waves from binary black hole coalescences: II. the waves' information and its extraction, with and without templates
We discuss the extraction of information from detected binary black hole
(BBH) coalescence gravitational waves, focusing on the merger phase that occurs
after the gradual inspiral and before the ringdown. Our results are: (1) If
numerical relativity simulations have not produced template merger waveforms
before BBH detections by LIGO/VIRGO, one can band-pass filter the merger waves.
For BBHs smaller than about 40 solar masses detected via their inspiral waves,
the band pass filtering signal to noise ratio indicates that the merger waves
should typically be just barely visible in the noise for initial and advanced
LIGO interferometers. (2) We derive an optimized (maximum likelihood) method
for extracting a best-fit merger waveform from the noisy detector output; one
"perpendicularly projects" this output onto a function space (specified using
wavelets) that incorporates our prior knowledge of the waveforms. An extension
of the method allows one to extract the BBH's two independent waveforms from
outputs of several interferometers. (3) If numerical relativists produce codes
for generating merger templates but running the codes is too expensive to allow
an extensive survey of the merger parameter space, then a coarse survey of this
parameter space, to determine the ranges of the several key parameters and to
explore several qualitative issues which we describe, would be useful for data
analysis purposes. (4) A complete set of templates could be used to test the
nonlinear dynamics of general relativity and to measure some of the binary
parameters. We estimate the number of bits of information obtainable from the
merger waves (about 10 to 60 for LIGO/VIRGO, up to 200 for LISA), estimate the
information loss due to template numerical errors or sparseness in the template
grid, and infer approximate requirements on template accuracy and spacing.Comment: 33 pages, Rextex 3.1 macros, no figures, submitted to Phys Rev
- …