94 research outputs found

    The oxygen consumption paradox of “stunned myocardium” in dogs

    Full text link
    The contractile state of the heart is a major determinant of myocardial oxygen consumption. Since regional myocardial contractility can be severely impaired following a transient coronary occlusion, post-ischemic myocardium is frequently assumed to consume less oxygen. To test this assumption, regional myocardial function and oxygen consumption were studied in ancsthetized dogs during 2 h of myocardial reperfusion following either a 15-min (Group I) or 4-h (Group II) left anterior descending coronary artery occlusion. Both groups developed similar post-ischemic regional dysfunction characterized by paradoxical motion (negative shortening). Measured as a percent of baseline segment shortening, anterior wall function in Group I (n=8) and Group II (n=5) at 30 min of reperfusion was −33±11% and −34±16% (p=NS) and at 120 min was −23±9% and −40±16% (p=NS). However, the two groups showed a marked difference in regional myocardial oxygen consumption during reperfusion. Despite the abnormal wall motion, regional oxygen consumption in Group I at 30 and 120 min of reperfusion was unchanged from pre-ischemic levels as measured as a percent of bascline: 104±20% (p=NS) and 111±21% (p=NS). In contrast, regional oxygen consumption in Group II was markedly depressed from bascline at 30 and 120 min of reperfusion: 42±7% (p<.01) and 40±8% (p<.01). To determine whether the dissociation between regional myocardial oxygen consumption and function in Group I was related to mitochondrial uncoupling, six additional dogs were studied. Tissue samples were obtained from post-ischemic myocardium after 120 min of reperfusion following a 15-min coronary artery occlusion, and compared to non-ischemic myocardium. There were no differences in the in vitro mitochondrial respiratory rates or oxidative phosphorylation capacity between the post-ischemic and non-ischemic myocardium. Therefore, in the post-ischemic myocardium, significant depressions in regional contractility may not be associated with falls in oxygen consumption. Following a 15-min coronary artery occlusion, the injured myocardium maintains a paradoxically high oxygen consumption with normal mitochondrial function despite decreased contractility and abnormal wall motion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/41748/1/395_2005_Article_BF01906965.pd

    T2-weighted cardiovascular magnetic resonance in acute cardiac disease

    Get PDF
    Cardiovascular magnetic resonance (CMR) using T2-weighted sequences can visualize myocardial edema. When compared to previous protocols, newer pulse sequences with substantially improved image quality have increased its clinical utility. The assessment of myocardial edema provides useful incremental diagnostic and prognostic information in a variety of clinical settings associated with acute myocardial injury. In patients with acute chest pain, T2-weighted CMR is able to identify acute or recent myocardial ischemic injury and has been employed to distinguish acute coronary syndrome (ACS) from non-ACS as well as acute from chronic myocardial infarction

    Ischaemic conditioning and reperfusion injury

    Get PDF
    The 30-year anniversary of the discovery of 'ischaemic preconditioning' is in 2016. This endogenous phenomenon can paradoxically protect the heart from acute myocardial infarction by subjecting it to one or more brief cycles of ischaemia and reperfusion. Apart from complete reperfusion, this method is the most powerful intervention known for reducing infarct size. The concept of ischaemic preconditioning has evolved into 'ischaemic conditioning', a term that encompasses a number of related endogenous cardioprotective strategies, applied either directly to the heart (ischaemic preconditioning or postconditioning) or from afar, for example a limb (remote ischaemic preconditioning, perconditioning, or postconditioning). Investigations of signalling pathways underlying ischaemic conditioning have identified a number of therapeutic targets for pharmacological manipulation. Over the past 3 decades, a number of ischaemic and pharmacological cardioprotection strategies, discovered in experimental studies, have been examined in the clinical setting of acute myocardial infarction and CABG surgery. The results from many of the studies have been disappointing, and no effective cardioprotective therapy is currently used in clinical practice. Several large, multicentre, randomized, controlled clinical trials on cardioprotection have highlighted the challenges of translating ischaemic conditioning and pharmacological cardioprotection strategies into patient benefit. However, a number of cardioprotective therapies have shown promising results in reducing infarct size and improving clinical outcomes in patients with ischaemic heart disease

    Robert Jennings: A Labor of Love in the Laboratory

    No full text
    corecore