3 research outputs found

    Hysteresis from Multiscale Porosity: Modeling Water Sorption and Shrinkage in Cement Paste

    Get PDF
    Cement paste has a complex distribution of pores and molecular-scale spaces. This distribution controls the hysteresis of water sorption isotherms and associated bulk dimensional changes (shrinkage). We focus on two locations of evaporable water within the fine structure of pastes, each having unique properties, and we present applied physics models that capture the hysteresis by dividing drying and rewetting into two related regimes based on relative humidity (RH). We show that a continuum model, incorporating a pore-blocking mechanism for desorption and equilibrium thermodynamics for adsorption, explains well the sorption hysteresis for a paste that remains above approximately 20% RH. In addition, we show with molecular models and experiments that water in spaces of ≲1  nm width evaporates below approximately 20% RH but reenters throughout the entire RH range. This water is responsible for a drying shrinkage hysteresis similar to that of clays but opposite in direction to typical mesoporous glass. Combining the models of these two regimes allows the entire drying and rewetting hysteresis to be reproduced accurately and provides parameters to predict the corresponding dimensional changes. The resulting model can improve the engineering predictions of long-term drying shrinkage accounting also for the history dependence of strain induced by hysteresis. Alternative strategies for quantitative analyses of the microstructure of cement paste based on this mesoscale physical model of water content within porous spaces are discussed.Portland Cement AssociationNational Ready Mixed Concrete Association (Research and Education Foundation)Schlumberger Foundatio

    Beneficial use of boiler ash in alkali-activated bricks

    No full text
    This research incorporates waste boiler ash into masonry construction materials using alkali-activation. The boiler ash, derived from three different Indian pulp and paper mills, has many undesirable characteristics for alkali-activation, including varying shape, large particle sizes ranging from 5 to 600 μm, loss on ignition between 8 and 35%, and less than 4% alumina. When combined with supplementary materials in the form of clay and lime, high compressive strengths are observed in the bricks made with all three ashes, demonstrating the robustness of the proposed mix design. A brick formulation with a solids phase weight ratio of ash(70):clay(20):lime(10), liquid to solid ratio of 0.45, and 2 M NaOH produces bricks with compressive strengths between 11 and 15 MPa after 28 days curing at 30 °C. Furthermore, early strength development is observed, as more than 55% of the 28 day strength is achieved after one day curing. An economic and environmental analysis indicates that these bricks can be produced for similar costs as the clay fired brick with reduced environmental impact, making them a viable alternative in the market

    Set in stone? A perspective on the concrete sustainability challenge

    No full text
    As the most abundant engineered material on Earth, concrete is essential to the physical infrastructure of all modern societies. There are no known materials that can replace concrete in terms of cost and availability. There are, however, environmental concerns, including the significant CO2 emissions associated with cement production, which create new incentives for university–industry collaboration to address concrete sustainability. Herein, we examine one aspect of this challenge—the translation of scientific understanding at the microscale into industrial innovation at the macroscale—by seeking improvements in cement-paste processing, performance, and sustainability through control of the mechanisms that govern microstructure development. Specifically, we consider modeling, simulation, and experimental advances in fracture, dissolution, precipitation, and hydration of cement paste precursors, as well as properties of the hardened cement paste within concrete. The aim of such studies is to optimize the chemical reactivity, mechanical performance, and other physical properties of cement paste to enable more sustainable processing routes for this ubiquitous material.Massachusetts Institute of Technology. Concrete Sustainability Hu
    corecore