2,162 research outputs found

    Phosphorylation of pRb: mechanism for RB pathway inactivation in MYCN-amplified retinoblastoma.

    Get PDF
    A small, but unique subgroup of retinoblastoma has been identified with no detectable mutation in the retinoblastoma gene (RB1) and with high levels of MYCN gene amplification. This manuscript investigated alternate pathways of inactivating pRb, the encoded protein in these tumors. We analyzed the mutation status of the RB1 gene and MYCN copy number in a series of 245 unilateral retinoblastomas, and the phosphorylation status of pRb in a subset of five tumors using immunohistochemistry. There were 203 tumors with two mutations in RB1 (RB1(-/-) , 83%), 29 with one (RB1(+/-) , 12%) and 13 with no detectable mutations (RB1(+/+) , 5%). Eighteen tumors carried MYCN amplification between 29 and 110 copies: 12 had two (RB1(-/-) ) or one RB1 (RB1(+/-) ) mutations, while six had no mutations (RB1(+/+) ). Immunohistochemical staining of tumor sections with antibodies against pRb and phosphorylated Rb (ppRb) displayed high levels of pRb and ppRb in both RB1(+/+) and RB1(+/-) tumors with MYCN amplification compared to no expression of these proteins in a classic RB1(-/-) , MYCN-low tumor. These results establish that high MYCN amplification can be present in retinoblastoma with or without coding sequence mutations in the RB1 gene. The functional state of pRb is inferred to be inactive due to phosphorylation of pRb in the MYCN-amplified retinoblastoma without coding sequence mutations. This makes inactivation of RB1 by gene mutation or its protein product, pRb, by protein phosphorylation, a necessary condition for initiating retinoblastoma tumorigenesis, independent of MYCN amplification

    Agouti C57BL/6N embryonic stem cells for mouse genetic resources.

    Get PDF
    We report the characterization of a highly germline competent C57BL/6N mouse embryonic stem cell line, JM8. To simplify breeding schemes, the dominant agouti coat color gene was restored in JM8 cells by targeted repair of the C57BL/6 nonagouti mutation. These cells provide a robust foundation for large-scale mouse knockout programs that aim to provide a public resource of targeted mutations in the C57BL/6 genetic background

    A forward genetic screen with a thalamocortical axon reporter mouse yields novel neurodevelopment mutants and a distinct emx2 mutant phenotype

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The dorsal thalamus acts as a gateway and modulator for information going to and from the cerebral cortex. This activity requires the formation of reciprocal topographic axon connections between thalamus and cortex. The axons grow along a complex multistep pathway, making sharp turns, crossing expression boundaries, and encountering intermediate targets. However, the cellular and molecular components mediating these steps remain poorly understood.</p> <p>Results</p> <p>To further elucidate the development of the thalamocortical system, we first created a thalamocortical axon reporter line to use as a genetic tool for sensitive analysis of mutant mouse phenotypes. The TCA-<it>tau-lacZ </it>reporter mouse shows specific, robust, and reproducible labeling of thalamocortical axons (TCAs), but not the overlapping corticothalamic axons, during development. Moreover, it readily reveals TCA pathfinding abnormalities in known cortical mutants such as <it>reeler</it>. Next, we performed an unbiased screen for genes involved in thalamocortical development using random mutagenesis with the TCA reporter. Six independent mutant lines show aberrant TCA phenotypes at different steps of the pathway. These include ventral misrouting, overfasciculation, stalling at the corticostriatal boundary, and invasion of ectopic cortical cell clusters. An outcross breeding strategy coupled with a genomic panel of single nucleotide polymorphisms facilitated genetic mapping with small numbers of mutant mice. We mapped a ventral misrouting mutant to the <it>Emx2 </it>gene, and discovered that some TCAs extend to the olfactory bulbs in this mutant. Mapping data suggest that other lines carry mutations in genes not previously known for roles in thalamocortical development.</p> <p>Conclusions</p> <p>These data demonstrate the feasibility of a forward genetic approach to understanding mammalian brain morphogenesis and wiring. A robust axonal reporter enabled sensitive analysis of a specific axon tract inside the mouse brain, identifying mutant phenotypes at multiple steps of the pathway, and revealing a new aspect of the <it>Emx2 </it>mutant. The phenotypes highlight vulnerable choice points and latent tendencies of TCAs, and will lead to a refined understanding of the elements and interactions required to form the thalamocortical system.</p> <p>See Commentary: <url>http://www.biomedcentral.com/1741-7007/9/1</url></p

    Phase III Prospective Randomized Comparison Trial of Depot Octreotide Plus Interferon Alfa-2b Versus Depot Octreotide Plus Bevacizumab in Patients With Advanced Carcinoid Tumors: SWOG S0518

    Get PDF
    Purpose Treatment options for neuroendocrine tumors (NETs) remain limited. This trial assessed the progression-free survival (PFS) of bevacizumab or interferon alfa-2b (IFN-α-2b) added to octreotide among patients with advanced NETs. Patients and Methods Southwest Oncology Group (SWOG) S0518, a phase III study conducted in a US cooperative group system, enrolled patients with advanced grades 1 and 2 NETs with progressive disease or other poor prognostic features. Patients were randomly assigned to treatment with octreotide LAR 20 mg every 21 days with either bevacizumab 15 mg/kg every 21 days or 5 million units of IFN-α-2b three times per week. The primary end point was centrally assessed PFS. This trial is registered with ClinicalTrials.gov as NCT00569127. Results A total of 427 patients was enrolled, of whom 214 were allocated to bevacizumab and 213 to IFN-α-2b. The median PFS by central review was 16.6 months (95% CI, 12.9 to 19.6 months) in the bevacizumab arm and was 15.4 months (95% CI, 9.6 to 18.6 months) in the IFN arm (hazard ratio [HR], 0.93; 95% CI, 0.73 to 1.18; P = .55). By site review, the median PFS times were 15.4 months (95% CI, 12.6 to 17.2 months) for bevacizumab and 10.6 months (95% CI, 8.5 to 14.4 months) for interferon (HR, 0.90; 95% CI, 0.72 to 1.12; P = .33). Time to treatment failure was longer with bevacizumab than with IFN (HR, 0.72; 95% CI, 0.58 to 0.89; P = .003). Confirmed radiologic response rates were 12% (95% CI, 8% to 18%) for bevacizumab and 4% (95% CI, 2% to 8%) for IFN. Common adverse events with bevacizumab and octreotide included hypertension (32%), proteinuria (9%), and fatigue (7%); with IFN and octreotide, they included fatigue (27%), neutropenia (12%), and nausea (6%). Conclusion No significant differences in PFS were observed between the bevacizumab and IFN arms, which suggests that these agents have similar antitumor activity among patients with advanced NETs

    A pathway to a stronger research culture in health policy

    Get PDF
    There are currently limited pathways into a career in health policy research in Australia, due in part to a serious absence of health policy research capability in Australian universities. The authors define what they consider health policy research and education should comprise, then examine what is currently on offer and propose ways to strengthen health policy research in Australia. This paper, which is part analysis and part commentary, is offered to provoke wider debate about how health policy research can be nurtured in Australia

    Monomeric C-Reactive Protein in Serum With Markedly Elevated CRP Levels Shares Common Calcium-Dependent Ligand Binding Properties With an in vitro Dissociated Form of C-Reactive Protein

    Get PDF
    A monomeric form of C-reactive protein (CRP) which precipitates with cell wall pneumococcal C polysaccharide (CWPS) and retains the ability to reversibly bind to its ligand phosphocholine has been produced through urea-induced dissociation at an optimized concentration of 3 M urea over a 10 weeks period. Dissociated samples were purified via size exclusion chromatography and characterized by western blot, phosphocholine affinity chromatography and CWPS precipitation. Human serum samples from patients with raised CRP levels (>100 mg/L as determined by the clinical laboratory assay) were purified by affinity and size exclusion chromatography and analyzed (n = 40) to determine whether circulating monomeric CRP could be detected ex vivo. All 40 samples tested positive for pentameric CRP via western blot and enzyme linked immunosorbent assay (ELISA) analysis. Monomeric C-reactive protein was also identified in all 40 patient samples tested, with an average level recorded of 1.03 mg/L (SE = ±0.11). Both the in vitro monomeric C-reactive protein and the human serum monomeric protein displayed a molecular weight of approximately 23 kDa, both were recognized by the same anti-CRP monoclonal antibody and both reversibly bound to phosphocholine in a calcium-dependent manner. In common with native pentameric CRP, the in vitro mCRP precipitated with CWPS. These overlapping characteristics suggest that a physiologically relevant, near-native monomeric CRP, which retains the structure and binding properties of native CRP subunits, has been produced through in vitro dissociation of pentameric CRP and also isolated from serum with markedly elevated CRP levels. This provides a clear route toward the in-depth study of the structure and function of physiological monomeric CRP
    corecore