8 research outputs found

    A spirulina-enhanced diet provides neuroprotection in an α-synuclein model of Parkinson's disease.

    Get PDF
    Inflammation in the brain plays a major role in neurodegenerative diseases. In particular, microglial cell activation is believed to be associated with the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). An increase in microglia activation has been shown in the substantia nigra pars compacta (SNpc) of PD models when there has been a decrease in tyrosine hydroxylase (TH) positive cells. This may be a sign of neurotoxicity due to prolonged activation of microglia in both early and late stages of disease progression. Natural products, such as spirulina, derived from blue green algae, are believed to help reverse this effect due to its anti-inflammatory/anti-oxidant properties. An adeno-associated virus vector (AAV9) for α-synuclein was injected in the substantia nigra of rats to model Parkinson's disease and to study the effects of spirulina on the inflammatory response. One month prior to surgeries, rats were fed either a diet enhanced with spirulina or a control diet. Immunohistochemistry was analyzed with unbiased stereological methods to quantify lesion size and microglial activation. As hypothesized, spirulina was neuroprotective in this α-synuclein model of PD as more TH+ and NeuN+ cells were observed; spirulina concomitantly decreased the numbers of activated microglial cells as determined by MHCII expression. This decrease in microglia activation may have been due, in part, to the effect of spirulina to increase expression of the fractalkine receptor (CX3CR1) on microglia. With this study we hypothesize that α-synuclein neurotoxicity is mediated, at least in part, via an interaction with microglia. We observed a decrease in activated microglia in the rats that received a spirulina- enhanced diet concomitant to neuroprotection. The increase in CX3CR1 in the groups that received spirulina, suggests a potential mechanism of action

    Effect of AAV9-synuclein treatment on the LC.

    No full text
    <p>Quantification of TH immunohistochemistry in the locus coeruleus using unbiased stereological techniques. Graph shows that 4 months following α-synuclein gene transfer there is a significant loss of TH positive cells in the LC (2-way ANOVA did not show a significant interaction, but did reveal main effects of diet and treatment, and bonferonni post-hoc revealed a difference between the α-synuclein control and diet treated groups, p<0.01). Treatment with spirulina was able to prevent the loss of TH positive cells in the locus coeruleus. Asterisk denotes significance (**p<0.01 vs control GFP; *p<0.05 vs control α-synuclein).</p

    Effect of spirulina on NeuN immunoreactive cells in the SNpc.

    No full text
    <p>NeuN positive cells in the SNpc after 1 or 4 months of α-synuclein expression. At 1 month, there was a decrease in NeuN positive cells in the SN, mirroring the loss of TH positive cells in Fig. 1. This confirms cell loss rather than loss of TH expression. The effect was similar at 4 months of expression (B). There was neuroprotection in the groups that received a diet enhanced with spirulina at both intervals. Two-way ANOVA yielded a significant interaction of diet and vector treatment at both time points [1 month F = 6.931, df = 1; 4 months F = 8.899 df = 1]. (*p<0.05; **p<0.01) after Bonferonni's post-hoc.</p

    Effects of spirulina on CX3CR1.

    No full text
    <p>Spirulina diet increased expression of CX3CR1; inset of Western blot in upper right. When the data are analyzed across groups there is a significant increase in expression of CX3CR1 in the spirulina treatment groups. Asterisk denotes significance (p<0.05; Bonferroni post-hoc). Two-way ANOVA shows a main effect of diet (F = 19.90; df = 1) and no interaction or main effect of vector treatment.</p

    Gene transfer efficiency is not affected by spirulina.

    No full text
    <p>Quantification of GFP positive cells in the SN. Stereological estimates of the number of GFP positive cells in the SN one month after gene transfer. There was no significant effect of the spirulina diet on numbers of GFP transduced cells (Student’s two-talied t-test).</p

    Effect of spirulina on TH immunoreactive cells in the SNpc.

    No full text
    <p>TH positive cells in the SNpc after 1 or 4 months of α-synuclein expression. Cells were counted using unbiased stereological counting techniques. (A) One month after α-synuclein gene transfer, there was a significant decrease in TH positive cells as compared to GFP control (N = 12–18/group). The spirulina diet group lesioned with α-synuclein (N = 12) had greater numbers of TH positive cells compared to the control diet group lesioned with α-synuclein (N = 18). There was a diet by vector group interaction in the two way ANOVA analysis [F = 5.569, p<0.01]. (B) Results at four months were similar. There was a similar loss of TH positive cells and protective effect of spirulina. Two-way ANOVA yielded a main effect of diet (F = 81.3), and a main effect of vector group (F = 45.5; p<0.01), although without a significant interaction. Bonferonni post-hoc tests comparing NIH 31 GFP (N = 10) vs NIH 31 synuclein (N = 8) and NIH31 synuclein vs spirulina synuclein (N = 8) groups were significant). Asterisk denotes significance (*P<0.05; **p<0.01).</p

    Ezetimibe added to statin therapy after acute coronary syndromes

    Get PDF
    BACKGROUND: Statin therapy reduces low-density lipoprotein (LDL) cholesterol levels and the risk of cardiovascular events, but whether the addition of ezetimibe, a nonstatin drug that reduces intestinal cholesterol absorption, can reduce the rate of cardiovascular events further is not known. METHODS: We conducted a double-blind, randomized trial involving 18,144 patients who had been hospitalized for an acute coronary syndrome within the preceding 10 days and had LDL cholesterol levels of 50 to 100 mg per deciliter (1.3 to 2.6 mmol per liter) if they were receiving lipid-lowering therapy or 50 to 125 mg per deciliter (1.3 to 3.2 mmol per liter) if they were not receiving lipid-lowering therapy. The combination of simvastatin (40 mg) and ezetimibe (10 mg) (simvastatin-ezetimibe) was compared with simvastatin (40 mg) and placebo (simvastatin monotherapy). The primary end point was a composite of cardiovascular death, nonfatal myocardial infarction, unstable angina requiring rehospitalization, coronary revascularization ( 6530 days after randomization), or nonfatal stroke. The median follow-up was 6 years. RESULTS: The median time-weighted average LDL cholesterol level during the study was 53.7 mg per deciliter (1.4 mmol per liter) in the simvastatin-ezetimibe group, as compared with 69.5 mg per deciliter (1.8 mmol per liter) in the simvastatin-monotherapy group (P<0.001). The Kaplan-Meier event rate for the primary end point at 7 years was 32.7% in the simvastatin-ezetimibe group, as compared with 34.7% in the simvastatin-monotherapy group (absolute risk difference, 2.0 percentage points; hazard ratio, 0.936; 95% confidence interval, 0.89 to 0.99; P = 0.016). Rates of pre-specified muscle, gallbladder, and hepatic adverse effects and cancer were similar in the two groups. CONCLUSIONS: When added to statin therapy, ezetimibe resulted in incremental lowering of LDL cholesterol levels and improved cardiovascular outcomes. Moreover, lowering LDL cholesterol to levels below previous targets provided additional benefit
    corecore