44 research outputs found

    The differential contribution of the innate immune system to a good pathological response in the breast and axillary lymph nodes induced by neoadjuvant chemotherapy in women with large and locally advanced breast cancers

    Get PDF
    The tumour microenvironment consists of malignant cells, stroma, and immune cells. The role of adaptive immunity in inducing a pathological complete response (pCR) in breast cancer with neoadjuvant chemotherapy (NAC) is well studied. The contribution of innate immunity, however, is poorly documented. Breast tumours and axillary lymph nodes (ALNs) from 33 women with large and locally advanced breast cancers (LLABCs) undergoing NAC were immunohistochemically assessed for tumour-infiltrating macrophages (TIMs: M1 and M2), neutrophils (TINs), and dendritic cells (TIDCs) using labelled antibodies and semiquantitative methods. Patients’ blood neutrophils (n = 108), DCs (mDC1 and pDC), and their costimulatory molecules (n = 30) were also studied. Pathological results were classified as pCR, good (GPR) or poor (PRR). In breast and metastatic ALNs, high levels of CD163+ TIMs were significantly associated with a pCR. In blood, high levels of neutrophils were significantly associated with pCR in metastatic ALNs, whilst the % of mDC1 and pDC and expression of HLA-DR, mDC1 CD40, and CD83 were significantly reduced. NAC significantly reduced tumour DCs but increased blood DCs. PPRs to NAC had significantly reduced HLA-DR, CD40, and CD86 expression. Our study demonstrated novel findings documenting the differential but important contributions of innate immunity to pCRs in patients with LLABCs undergoing NAC

    Effects on quality of life, anti-cancer responses, breast conserving surgery and survival with neoadjuvant docetaxel: a randomised study of sequential weekly versus three-weekly docetaxel following neoadjuvant doxorubicin and cyclophosphamide in women with primary breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Weekly docetaxel has occasionally been used in the neoadjuvant to downstage breast cancer to reduce toxicity and possibly enhance quality of life. However, no studies have compared the standard three weekly regimen to the weekly regimen in terms of quality of life. The primary aim of our study was to compare the effects on QoL of weekly versus 3-weekly sequential neoadjuvant docetaxel. Secondary aims were to determine the clinical and pathological responses, incidence of Breast Conserving Surgery (BCS), Disease Free Survival (DFS) and Overall Survival (OS).</p> <p>Methods</p> <p>Eighty-nine patients receiving four cycles of doxorubicin and cyclophosphamide were randomised to receive twelve cycles of weekly docetaxel (33 mg/m<sup>2</sup>) or four cycles of 3-weekly docetaxel (100 mg/m<sup>2</sup>). The Functional Assessment of Cancer Therapy-Breast and psychosocial questionnaires were completed.</p> <p>Results</p> <p>At a median follow-up of 71.5 months, there was no difference in the Trial Outcome Index scores between treatment groups. During weekly docetaxel, patients experienced less constipation, nail problems, neuropathy, tiredness, distress, depressed mood, and unhappiness. There were no differences in overall clinical response (93% vs. 90%), pathological complete response (20% vs. 27%), and breast-conserving surgery (BCS) rates (49% vs. 42%). Disease-free survival and overall survival were similar between treatment groups.</p> <p>Conclusions</p> <p>Weekly docetaxel is well-tolerated and has less distressing side-effects, without compromising therapeutic responses, Breast Conserving Surgery (BCS) or survival outcomes in the neoadjuvant setting.</p> <p>Trial registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN09184069">ISRCTN09184069</a></p

    Tumour-draining axillary lymph nodes in patients with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC): the crucial contribution of immune cells (effector, regulatory) and cytokines (TH1, TH2) to immune-mediated tumour cell death induced by NAC

    Get PDF
    Background The tumour microenvironment consists of malignant cells, stroma and immune cells. In women with large and locally advanced breast cancers (LLABCs) undergoing neoadjuvant chemotherapy (NAC), tumour-infiltrating lymphocytes (TILs), various subsets (effector, regulatory) and cytokines in the primary tumour play a key role in the induction of tumour cell death and a pathological complete response (pCR) with NAC. Their contribution to a pCR in nodal metastases, however, is poorly studied and was investigated. Methods Axillary lymph nodes (ALNs) (24 with and 9 without metastases) from women with LLABCs undergoing NAC were immunohistochemically assessed for TILs, T effector and regulatory cell subsets, NK cells and cytokine expression using labelled antibodies, employing established semi-quantitative methods. IBM SPSS statistical package (21v) was used. Non-parametric (paired and unpaired) statistical analyses were performed. Univariate and multivariate regression analyses were carried out to establish the prediction of a pCR and Spearman’s Correlation Coefficient was used to determine the correlation of immune cell infiltrates in ALN metastatic and primary breast tumours. Results In ALN metastases high levels of TILs, CD4+ and CD8+ T and CD56+ NK cells were significantly associated with pCRs.. Significantly higher levels of Tregs (FOXP3+, CTLA-4+) and CD56+ NK cells were documented in ALN metastases than in the corresponding primary breast tumours. CD8+ T and CD56+ NK cells showed a positive correlation between metastatic and primary tumours. A high % CD8+ and low % FOXP3+ T cells and high CD8+: FOXP3+ ratio in metastatic ALNs (tumour-free para-cortex) were associated with pCRs. Metastatic ALNs expressed high IL-10, low IL-2 and IFN-ϒ. Conclusions Our study has provided new data characterising the possible contribution of T effector and regulatory cells and NK cells and T helper1 and 2 cytokines to tumour cell death associated with NAC in ALNs

    Generation in vivo of peptide-specific cytotoxic T cells and presence of regulatory T cells during vaccination with hTERT (class I and II) peptide-pulsed DCs

    Get PDF
    Optimal techniques for DC generation for immunotherapy in cancer are yet to be established. Study aims were to evaluate: (i) DC activation/maturation milieu (TNF-α +/- IFN-α) and its effects on CD8+ hTERT-specific T cell responses to class I epitopes (p540 or p865), (ii) CD8+ hTERT-specific T cell responses elicited by vaccination with class I alone or both class I and II epitope (p766 and p672)-pulsed DCs, prepared without IFN-α, (iii) association between circulating T regulatory cells (Tregs) and clinical responses

    ACORN (A Clinically-Oriented Antimicrobial Resistance Surveillance Network) II: protocol for case based antimicrobial resistance surveillance

    Get PDF
    Background: Antimicrobial resistance surveillance is essential for empiric antibiotic prescribing, infection prevention and control policies and to drive novel antibiotic discovery. However, most existing surveillance systems are isolate-based without supporting patient-based clinical data, and not widely implemented especially in low- and middle-income countries (LMICs). Methods: A Clinically-Oriented Antimicrobial Resistance Surveillance Network (ACORN) II is a large-scale multicentre protocol which builds on the WHO Global Antimicrobial Resistance and Use Surveillance System to estimate syndromic and pathogen outcomes along with associated health economic costs. ACORN-healthcare associated infection (ACORN-HAI) is an extension study which focuses on healthcare-associated bloodstream infections and ventilator-associated pneumonia. Our main aim is to implement an efficient clinically-oriented antimicrobial resistance surveillance system, which can be incorporated as part of routine workflow in hospitals in LMICs. These surveillance systems include hospitalised patients of any age with clinically compatible acute community-acquired or healthcare-associated bacterial infection syndromes, and who were prescribed parenteral antibiotics. Diagnostic stewardship activities will be implemented to optimise microbiology culture specimen collection practices. Basic patient characteristics, clinician diagnosis, empiric treatment, infection severity and risk factors for HAI are recorded on enrolment and during 28-day follow-up. An R Shiny application can be used offline and online for merging clinical and microbiology data, and generating collated reports to inform local antibiotic stewardship and infection control policies. Discussion: ACORN II is a comprehensive antimicrobial resistance surveillance activity which advocates pragmatic implementation and prioritises improving local diagnostic and antibiotic prescribing practices through patient-centred data collection. These data can be rapidly communicated to local physicians and infection prevention and control teams. Relative ease of data collection promotes sustainability and maximises participation and scalability. With ACORN-HAI as an example, ACORN II has the capacity to accommodate extensions to investigate further specific questions of interest

    Tumour-draining axillary lymph nodes in patients with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC): the crucial contribution of immune cells (effector, regulatory) and cytokines (TH1, TH2) to immune-mediated tumour cell death induced by NAC

    No full text
    Background and Aim: The tumour microenvironment consists of malignant cells, stroma and immune cells. In women with large and locally advanced breast cancers (LLABCs) undergoing neoadjuvant chemotherapy (NAC), tumour-infiltrating lymphocytes (TILs), various subsets (effector, regulatory) and cytokines in the primary tumour play a key role in the induction of tumour cell death and a pathological complete response (pCR) with NAC. The contribution of the cellular and humoral responses to a pCR in nodal metastases, however, is poorly studied and was investigated. Patients and Methods: Axillary lymph nodes (ALNs) (24 with and 9 without metastases) from women with LLABCs undergoing NAC were immunohistochemically assessed for TILs, T cell subsets, NK cells and cytokine expression using labelled antibodies, employing established semi-quantitative methods. Results: In ALN metastases high levels of TILs, CD4+ and CD8+ T and CD56+ NK cells were significantly associated with pCRs. High levels of TILs and CD56+ NK cells in ALN metastases were independent predictors (univariate analysis) of a pCR with NAC. Significantly higher levels of Tregs (FOXP3+, CTLA-4+) and CD56+ NK cells were documented in ALN metastases than in the corresponding primary breast tumours. CD8+ T and CD56+ NK cells showed a positive correlation between metastatic and primary tumours. A high % CD8+ and low % FOXP3+ T cells and high CD8+ :FOXP3+ ratio in metastatic ALNs (tumour-free paracortex) were associated with pCRs. Metastatic ALNs expressed high IL-10, low IL-2 and IFN-Ï’. Conclusion: Our study has provided new data characterising the possible contribution of T effector/regulatory and NK cells and cytokines to tumour cell death with NAC

    Tumour-draining axillary lymph nodes in patients with large and locally advanced breast cancers undergoing neoadjuvant chemotherapy (NAC): the crucial contribution of immune cells (effector, regulatory) and cytokines (TH1, TH2) to immune-mediated tumour cell death induced by NAC

    No full text
    Background and Aim: The tumour microenvironment consists of malignant cells, stroma and immune cells. In women with large and locally advanced breast cancers (LLABCs) undergoing neoadjuvant chemotherapy (NAC), tumour-infiltrating lymphocytes (TILs), various subsets (effector, regulatory) and cytokines in the primary tumour play a key role in the induction of tumour cell death and a pathological complete response (pCR) with NAC. The contribution of the cellular and humoral responses to a pCR in nodal metastases, however, is poorly studied and was investigated. Patients and Methods: Axillary lymph nodes (ALNs) (24 with and 9 without metastases) from women with LLABCs undergoing NAC were immunohistochemically assessed for TILs, T cell subsets, NK cells and cytokine expression using labelled antibodies, employing established semi-quantitative methods. Results: In ALN metastases high levels of TILs, CD4+ and CD8+ T and CD56+ NK cells were significantly associated with pCRs. High levels of TILs and CD56+ NK cells in ALN metastases were independent predictors (univariate analysis) of a pCR with NAC. Significantly higher levels of Tregs (FOXP3+, CTLA-4+) and CD56+ NK cells were documented in ALN metastases than in the corresponding primary breast tumours. CD8+ T and CD56+ NK cells showed a positive correlation between metastatic and primary tumours. A high % CD8+ and low % FOXP3+ T cells and high CD8+ :FOXP3+ ratio in metastatic ALNs (tumour-free paracortex) were associated with pCRs. Metastatic ALNs expressed high IL-10, low IL-2 and IFN-Ï’. Conclusion: Our study has provided new data characterising the possible contribution of T effector/regulatory and NK cells and cytokines to tumour cell death with NAC

    Annexins in human breast cancer: possible predictors of pathological response to neoadjuvant chemotherapy

    No full text
    Neoadjuvant chemotherapy is used in women who have large or locally advanced breast cancers. However, up to 70% of women who receive neoadjuvant chemotherapy fail to achieve a complete pathological response in their primary tumour (a surrogate marker of long-term survival). Five proteins, previously identified to be linked with chemoresistance in our in vitro experiments, were identified histochemically in pre-treatment core needle biopsies from 40 women with large or locally advanced breast cancers. Immunohistochemical staining with the five proteins showed no single protein to be a predictor of response to chemotherapy. However, pre-treatment breast cancer specimens that were annexin-A2 positive but annexin-A1 negative correlated with a poor pathological response (p = 0.04, Fisher’s exact test). The mechanisms by which annexins confer chemoresistance have not been identified, but may be due to inhibition of apoptosis. Annexin-A1 has been shown to enhance apoptosis, whilst annexin-A2, by contrast, inhibits apoptosi
    corecore