3 research outputs found

    4‑Anilino-2-pyridylquinazolines and -pyrimidines as Highly Potent and Nontoxic Inhibitors of Breast Cancer Resistance Protein (ABCG2)

    No full text
    Multidrug resistance (MDR) mediated by ATP-binding cassette (ABC) transport proteins remains a major problem in the chemotherapeutic treatment of cancer and might be overcome by inhibition of the transporter. Because of the lack of understanding, the complex mechanisms involved in the transport process, in particular for breast cancer resistance protein (BCRP/ABCG2), there is a persistent need for studies of inhibitors of ABCG2. In this study, we investigated a systematic series of 4-substituted-2-pyridylquinazolines in terms of their inhibitory potency as well as selectivity toward ABCG2. For comparison, the quinazoline scaffold was reduced to the significantly smaller 4-methylpyrimidine basic structure. Furthermore, the cytotoxicity and the ability to reverse MDR was tested with the chemotherapeutic agents SN-38 and mitoxantrone (MX). Interaction of the compounds with ABCG2 was investigated by a colorimetric ATPase assay. Enzyme kinetic studies were carried out with Hoechst 33342 as fluorescent dye and substrate of ABCG2 to elucidate the compounds binding modes

    New Inhibitors of Breast Cancer Resistance Protein (ABCG2) Containing a 2,4-Disubstituted Pyridopyrimidine Scaffold

    No full text
    Multidrug resistance (MDR) occurring during cancer chemotherapy is a major obstacle for effectiveness and response to therapy and is often caused by ATP-binding cassette (ABC) efflux transporters. Belonging to the family of ABC transporters, breast cancer resistance protein is getting more and more in the spotlight of research. As a strategy to overcome MDR, inhibitors of ABC transporters were synthesized, which could be applied in combination with cytostatic drugs. For this purpose, 2,4-disubstituted pyridopyrimidine derivatives were synthesized. The investigations confirmed three key characteristics of good inhibitors: a low intrinsic cytotoxicity and a high potency and selectivity toward ABCG2. For selected compounds the interaction with ABCG2 was elucidated and their effect on ATPase activity and conformation sensitive 5D3 antibody binding was investigated. Their ability to reverse MDR in coadministration with the active metabolite of irinotecan and mitoxantron was confirmed

    New Inhibitors of Breast Cancer Resistance Protein (ABCG2) Containing a 2,4-Disubstituted Pyridopyrimidine Scaffold

    No full text
    Multidrug resistance (MDR) occurring during cancer chemotherapy is a major obstacle for effectiveness and response to therapy and is often caused by ATP-binding cassette (ABC) efflux transporters. Belonging to the family of ABC transporters, breast cancer resistance protein is getting more and more in the spotlight of research. As a strategy to overcome MDR, inhibitors of ABC transporters were synthesized, which could be applied in combination with cytostatic drugs. For this purpose, 2,4-disubstituted pyridopyrimidine derivatives were synthesized. The investigations confirmed three key characteristics of good inhibitors: a low intrinsic cytotoxicity and a high potency and selectivity toward ABCG2. For selected compounds the interaction with ABCG2 was elucidated and their effect on ATPase activity and conformation sensitive 5D3 antibody binding was investigated. Their ability to reverse MDR in coadministration with the active metabolite of irinotecan and mitoxantron was confirmed
    corecore