10,300 research outputs found

    Leaf Optical Responses to Light and Soil Nutrient Availability in Temperature Deciduous Trees

    Get PDF
    Leaf optical parameters influence light availability at the cellular, leaf, and canopy scale of integration. While recent studies have focused on leaf optical responses to acute plant stress, the effects of changes in plant resources on leaf optics remain poorly characterized. We examined leaf optical and anatomical responses of five temperate deciduous tree species to moderate changes in nutrient and light availability. Spectral reflectance in the visible waveband generally increased at high light, but decreased with increased nutrient availability. Patterns of both spectral reflectance and absorptance were primarily determined by chlorophyll concentration although carotenoid concentration was also influential. While most anatomical features did not explain residual variation in reflectance, cuticle thickness was significantly related to reflectance at complementary angles compared to the angle of incidence. Absorptance did not change with light environment; however, absorption efficiency per unit biomass increased by approximately 40% under low light, due to reduced leaf mass per area. We conclude that changes in resource availability differentially influence leaf optical properties and that such changes are driven primarily by changes in pigment concentrations. The magnitude of leaf optical responses to moderate changes in resource availability was comparable to those of acute stress responses and varied among species

    Edaphic Specialization in Tropical Trees: Physiological Correlates and Responses to Reciprocal Transplantation

    Get PDF
    Recent research has documented the importance of edaphic factors in determining the habitat associations of tree species in many tropical rain forests, but the underlying mechanisms for edaphic associations are unclear. At Sepilok Forest Reserve, Sabah, Malaysian Borneo, two main soil types derived from sandstone (ridges) and alluvium (valleys) differ in nutrient and water availability and are characterized by forests differing markedly in species composition, structure, and understory light availability. We use both survey and reciprocal transplants to examine physiological adaptations to differences in light, nutrient, and water availability between these soil types, and test for the importance of resource-use efficiency in determining edaphic specialization. Photosynthetic surveys for congeneric and confamilial pairs (one species per soil type) of edaphic specialists and for generalists common to both soil types show that species specializing on sandstone derived soil had lower stomatal conductance at a given assimilation rate than those occurring on alluvial soil and also had greater instantaneous and integrated water-use efficiencies. Foliar dark respiration rates per unit photosynthesis were higher for sandstone ridge than alluvial lowland specialists. We suggest that these higher respiration rates are likely due to increases in photosynthetic enzyme concentrations to compensate for lower internal CO2 concentrations resulting from increased stomatal closure. This is supported by lower photosynthetic nitrogen-use efficiencies in the sandstone ridge specialists. Generalist species had lower water-use efficiencies than sandstone ridge specialists when growing on the drier, sandy ridgetops, but their nitrogen-use efficiencies did not differ from the species specialized to the more resource-rich alluvial valleys. We varied light environment and soil nutrient availability in a reciprocal transplant experiment involving two specialist species from each soil type. Edaphic specialist species, when grown on the soil type for which they were not specialized, were not capable of acclimatory shifts to achieve similar resource-use efficiencies as species specialized to that soil type. We conclude that divergent water-use strategies are an important mechanism underlying differences in edaphic associations and thus contributing to maintenance of high local tree species diversity in Bornean rain forests

    Racial, Gender, and Professional Diversification in the Forest Service: A Rejoinder

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/75113/1/j.1541-0072.1997.tb00005.x.pd

    Taking the sting out of wasp nests: a dialogue on modeling in mathematical biology

    Get PDF
    Wasps in hot climates build elongated nests, while in colder areas they tend to be circular. Mathematics cannot explain that, but there are questions about numbers of cells that can be answered

    Impact of Pre-Columbian Agriculture, Climate Change, and Tectonic Activity Inferred From a 5,700-Year Paleolimnological Record from Lake Nicaragua

    Get PDF
    Lake Nicaragua, the largest lake in Central America, is a promising site for paleolimnological study of past climate change, tectonic and volcanic activity, and pre-Columbian agriculture in the region. It is near the northern limit of the Intertropical Convergence Zone (ITCZ), which brings the rainy season to the tropics, so effects of decreasing precipitation due to southern migration of the ITCZ through the Holocene should be observable. Because fault zones and an active volcano lie within the lake, the long-term impact of tectonic and volcanic activity can also be examined. Finally, the fertile volcanic soils near the lake may have encouraged early agriculture. We analyzed diatoms, biogenic silica (BSi), total organic carbon (TOC), water content, volcanic glass, and magnetic susceptibility in a sediment core from Lake Nicaragua with eleven accelerator mass spectroscopy radiocarbon dates, spanning ~5,700 years. Sediment accumulation rates decreased from the bottom to the top of the core, indicating a general drying trend through the Holocene. An increase in eutrophic diatom abundance suggests that pre-Columbian agriculture impacted the lake as early as ~5,400 cal yr BP. Above a horizon of coarser grains deposited sometime between ~5,200 and 1,600 cal yr BP, planktonic diatoms increased and remained dominant to the top of the core, indicating that water depth permanently increased. Although magnetic susceptibility peaked and water content dipped at the coarse horizon, volcanic glass fragments did not increase, suggesting that the coarse horizon and subsequent increase in water depth were caused by tectonic rather than by volcanic activity. Decreased accumulation rates of BSi and TOC indicate that water became clearer when depth increased

    An upper bound for the minimum weight of the dual codes of desarguesian planes

    Get PDF
    AbstractWe show that a construction described in [K.L. Clark, J.D. Key, M.J. de Resmini, Dual codes of translation planes, European J. Combin. 23 (2002) 529–538] of small-weight words in the dual codes of finite translation planes can be extended so that it applies to projective and affine desarguesian planes of any order pm where p is a prime, and m≄1. This gives words of weight 2pm+1−pm−1p−1 in the dual of the p-ary code of the desarguesian plane of order pm, and provides an improved upper bound for the minimum weight of the dual code. The same will apply to a class of translation planes that this construction leads to; these belong to the class of AndrĂ© planes.We also found by computer search a word of weight 36 in the dual binary code of the desarguesian plane of order 32, thus extending a result of KorchmĂĄros and Mazzocca [GĂĄbor KorchmĂĄros, Francesco Mazzocca, On (q+t)-arcs of type (0,2,t) in a desarguesian plane of order q, Math. Proc. Cambridge Philos. Soc. 108 (1990) 445–459]

    A Sustained Dietary Change Increases Epigenetic Variation in Isogenic Mice

    Get PDF
    Epigenetic changes can be induced by adverse environmental exposures, such as nutritional imbalance, but little is known about the nature or extent of these changes. Here we have explored the epigenomic effects of a sustained nutritional change, excess dietary methyl donors, by assessing genomic CpG methylation patterns in isogenic mice exposed for one or six generations. We find stochastic variation in methylation levels at many loci; exposure to methyl donors increases the magnitude of this variation and the number of variable loci. Several gene ontology categories are significantly overrepresented in genes proximal to these methylation-variable loci, suggesting that certain pathways are susceptible to environmental influence on their epigenetic states. Long-term exposure to the diet (six generations) results in a larger number of loci exhibiting epigenetic variability, suggesting that some of the induced changes are heritable. This finding presents the possibility that epigenetic variation within populations can be induced by environmental change, providing a vehicle for disease predisposition and possibly a substrate for natural selection.This work was supported by the Australian Research Council (DP0771859) and the National Health and Medical Research Council (#459412, #635510)

    Cloning and Sequencing of Protein Kinase cDNA from Harbor Seal (Phoca vitulina) Lymphocytes

    Get PDF
    Protein kinases (PKs) play critical roles in signal transduction and activation of lymphocytes. The identification of PK genes provides a tool for understanding mechanisms of immunotoxic xenobiotics. As part of a larger study investigating persistent organic pollutants in the harbor seal and their possible immunomodulatory actions, we sequenced harbor seal cDNA fragments encoding PKs. The procedure, using degenerate primers based on conserved motifs of human protein tyrosine kinases (PTKs), successfully amplified nine phocid PK gene fragments with high homology to human and rodent orthologs. We identified eight PTKs and one dual (serine/threonine and tyrosine) kinase. Among these were several PKs important in early signaling events through the B- and T-cell receptors (FYN, LYN, ITK and SYK) and a MAP kinase involved in downstream signal transduction. V-FGR, RET and DDR2 were also expressed. Sequential activation of protein kinases ultimately induces gene transcription leading to the proliferation and differentiation of lymphocytes critical to adaptive immunity. PKs are potential targets of bioactive xenobiotics, including persistent organic pollutants of the marine environment; characterization of these molecules in the harbor seal provides a foundation for further research illuminating mechanisms of action of contaminants speculated to contribute to large-scale die-offs of marine mammals via immunosuppression
    • 

    corecore