8 research outputs found

    Changes in quantity and sources of dietary fiber from adopting healthy low-fat vs. Healthy low-carb weight loss diets: Secondary analysis of dietfits weight loss diet study

    Get PDF
    The daily intake of dietary fiber is well below the recommended levels in the US. The effect of adopting a low-fat vs. a low-carbohydrate weight loss diet on fiber intake is of interest but not well-documented, especially when both approaches promote high-quality food choices. The objective of this paper is to compare the quantity and sources of dietary fiber between a healthy low-fat (HLF) vs. healthy low-carbohydrate (HLC) diet group when consumed over 12 months in a weight loss diet study. In this secondary analysis of the Diet Intervention Examining The Factors Interacting with Treatment Success (DIETFITS) study, the amount and sources of dietary fiber were examined in generally healthy adults, 18–50 years of age, Body Mass Index (BMI) 28–40 kg/m2, randomized to HLF or HLC for 12 months, who had available 24-h recalls at 0 (n = 609), 3 (n = 549), 6 (n = 491), and 12 (n = 449) months. The dietary intake was estimated by the Nutrition Data System for Research (NDS-R). The sources of fiber were determined for the major food groups. Significantly more total dietary fiber was consumed by HLF at every post-randomization time point, and, at 12 m, was 23.04 ± 9.43 g vs. 18.61 ± 8.12 g for HLF vs. HLC, respectively, p \u3c 0.0001. In both diet groups at 12 months, the highest amount of dietary fiber came from non-starchy vegetables (4.13 ± 3.05 g and 5.13 ± 3.59 g). The other primary sources of fiber at 12 months for the HLF group were from whole grains (3.90 ± 3.13 g) and fruits (3.40 ± 2.87 g), and, for the HLC group, were from plant protein and fat sources, such as nuts and seeds, their butters, and avocados (2.64 ± 2.64 g). In the DIETFITS study, the difference in the total fiber intake for the HLF vs. HLC groups was more modest than expected. The HLC group consumed reasonably high amounts of fiber from high-protein and high fat plant-based sources

    Development and evaluation of a novel dietary bisphenol A (BPA) exposure risk tool

    Get PDF
    Background: Exposure to endocrine disrupting chemicals such as bisphenol A (BPA) is primarily from the diet through canned foods. Characterizing dietary exposures can be conducted through biomonitoring and dietary surveys; however, these methods can be time-consuming and challenging to implement. Methods: We developed a novel dietary exposure risk questionnaire to evaluate BPA exposure and compared these results to 24-hr dietary recall data from participants (n = 404) of the Diet Intervention Examining The Factors Interacting with Treatment Success (DIETFITS) study, a dietary clinical trial, to validate questionnaire responses. High BPA exposure foods were identified from the dietary recalls and used to estimate BPA exposure. Linear regression models estimated the association between exposure to BPA and questionnaire responses. A composite risk score was developed to summarize questionnaire responses. Results: In questionnaire data, 65% of participants ate canned food every week. A composite exposure score validated that the dietary exposure risk questionnaire captured increasing BPA exposure. In the linear regression models, utilizing questionnaire responses vs. 24-hr dietary recall data, participants eating canned foods 1–2 times/week (vs. never) consumed 0.78 more servings (p \u3c 0.001) of high BPA exposure foods, and those eating canned foods 3+ times/week (vs. never) consumed 0.89 more servings (p = 0.013) of high BPA exposure foods. Participants eating 3+ packaged items/day (vs. never) consumed 62.65 more total grams of high BPA exposure food (p = 0.036). Conclusions: Dietary exposure risk questionnaires may provide an efficient alternative approach to 24-hour dietary recalls to quantify dietary BPA exposure with low participant burden. Trial registration: The trial was prospectively registered at clinicaltrials.gov as NCT01826591 on April 8, 2013

    A comparative study of allowable pesticide residue levels on produce in the United States

    Get PDF
    Background: The U.S. imports a substantial and increasing portion of its fruits and vegetables. The U.S. Food and Drug Administration currently inspects less than one percent of import shipments. While countries exporting to the U.S. are expected to comply with U.S. tolerances, including allowable pesticide residue levels, there is a low rate of import inspections and few other incentives for compliance. Methods: This analysis estimates the quantity of excess pesticide residue that could enter the U.S. if exporters followed originating country requirements but not U.S. pesticide tolerances, for the top 20 imported produce items based on quantities imported and U.S. consumption levels. Pesticide health effects data are also shown. Results: The model estimates that for the identified items, 120 439 kg of pesticides in excess of U.S. tolerances could potentially be imported to the U.S., in cases where U.S. regulations are more protective than those of originating countries. This figure is in addition to residues allowed on domestic produce. In the modeling, the top produce item, market, and pesticide of concern were oranges, Chile, and Zeta-Cypermethrin. Pesticides in this review are associated with health effects on 13 body systems, and some are associated with carcinogenic effects. Conclusions: There is a critical information gap regarding pesticide residues on produce imported to the U.S. Without a more thorough sampling program, it is not possible accurately to characterize risks introduced by produce importation. The scenario presented herein relies on assumptions, and should be considered illustrative. The analysis highlights the need for additional investigation and resources for monitoring, enforcement, and other interventions, to improve import food safety and reduce pesticide exposures in originating countries

    Assessing Public Health Benefits of Replacing Freight Trucks with Cargo Cycles in Last Leg Delivery Trips in Urban Centers

    Get PDF
    Increased urbanization, population growth, and demand for time-sensitive deliveries means increased freight movement in cities, which contributes to emissions, noise, and safety concerns. One innovative mode gaining widespread attention for urban deliveries is cargo cycles—bicycles adapted for freight delivery. Despite the recognized potential and possible success of transporting at least 25% of freight via cycle, research remains limited. This research investigates the potential of cargo cycle delivery for last mile freight in Oakland, California, with a focus on the West Oakland neighborhood. The data collection included interviews, focus groups, vehicle field observation and counts, and traffic simulation modeling. The traffic simulation examined scenarios where businesses converted different percentages of current deliveries to cargo cycles using a transfer hub as the starting point for their cargo cycle delivery. The best-case scenario—where the maximum percentage of deliveries were made with cargo cycle instead of motorized vehicles—resulted in reductions of 2600 vehicle miles traveled (VMT) per day. In that case scenario, the vehicle miles traveled (VMT) reduction is equivalent to a reduction in emissions of PM2.5, PM10, NOx, and reactive organic gas (ROG) of taking about 1000 Class 4 box trucks off the roads of West Oakland per day. In the worst-case scenario, with a significantly smaller percentage of motorized package deliveries converted to cargo cycles, there is a reduction of 160 VMT, equivalent to the removal of approximately 80 Class 4 box trucks off the roads of West Oakland per day. This potential reduction in air pollution and traffic congestion, as well as job creation, would benefit West Oakland residents
    corecore