38 research outputs found

    Patterned Gene Expression Directs Bipolar Planar Polarity in Drosophila

    Get PDF
    AbstractDuring convergent extension in Drosophila, polarized cell movements cause the germband to narrow along the dorsal-ventral (D-V) axis and more than double in length along the anterior-posterior (A-P) axis. This tissue remodeling requires the correct patterning of gene expression along the A-P axis, perpendicular to the direction of cell movement. Here, we demonstrate that A-P patterning information results in the polarized localization of cortical proteins in intercalating cells. In particular, cell fate differences conferred by striped expression of the even-skipped and runt pair-rule genes are both necessary and sufficient to orient planar polarity. This polarity consists of an enrichment of nonmuscle myosin II at A-P cell borders and Bazooka/PAR-3 protein at the reciprocal D-V cell borders. Moreover, bazooka mutants are defective for germband extension. These results indicate that spatial patterns of gene expression coordinate planar polarity across a multicellular population through the localized distribution of proteins required for cell movement

    SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila

    Get PDF
    The Arp2/3 complex and its activators, Scar/WAVE and Wiskott-Aldrich Syndrome protein (WASp), promote actin polymerization in vitro and have been proposed to influence cell shape and motility in vivo. We demonstrate that the Drosophila Scar homologue, SCAR, localizes to actin-rich structures and is required for normal cell morphology in multiple cell types throughout development. In particular, SCAR function is essential for cytoplasmic organization in the blastoderm, axon development in the central nervous system, egg chamber structure during oogenesis, and adult eye morphology. Highly similar developmental requirements are found for subunits of the Arp2/3 complex. In the blastoderm, SCAR and Arp2/3 mutations result in a reduction in the amount of cortical filamentous actin and the disruption of dynamically regulated actin structures. Remarkably, the single Drosophila WASp homologue, Wasp, is largely dispensable for these numerous Arp2/3-dependent functions, whereas SCAR does not contribute to cell fate decisions in which Wasp and Arp2/3 play an essential role. These results identify SCAR as a major component of Arp2/3-dependent cell morphology during Drosophila development and demonstrate that the Arp2/3 complex can govern distinct cell biological events in response to SCAR and Wasp regulation

    Cell-pattern disordering during convergent extension in Drosophila.

    No full text
    Abstract Convergent extension is the cell-rearrangement process by which a developing embryo elongates to establish the head-to-tail body axis. In the early Drosophila embryo, this process occurs within a one-cell-thick epithelial layer. Using confocal microscopy, images were collected of the two-dimensional cell pattern at four stages during convergent extension in wild-type embryos and at one stage in two classes of mutant embryos. The cellular topology was analysed in terms of the statistical distribution p(n), the frequency of occurrence of n-sided cells. For wild-type embryos, the results demonstrate progressive cell-pattern disordering during convergent extension. The second moment (variance) of p(n) triples to 1.1 while the peak at p(6) drops from 0.65 to 0.38. The fraction of fourfold vertices (four edges meeting) increases from 2% to 8%. Quantitative analysis of interface orientations reveals that the initial degree of hexatic edge-orientational order essentially disappears during the course of convergent extension. The degree of cell-pattern disordering in the two mutants resembles distinct stages in the wild type and correlates with the extent of axis elongation

    Cell mechanics and feedback regulation of actomyosin networks

    No full text
    Actomyosin contractility is the major force-generating machinery that shapes cells and tissues during morphogenesis. New evidence from Drosophila demonstrates that these forces are spatially organized by a combination of biochemical and mechanical signals that provide dynamic feedback in a complex cellular environment

    Wounded cells drive rapid epidermal repair in the early Drosophila embryo

    No full text
    Epithelial tissues are protective barriers that display a remarkable ability to repair wounds. Wound repair is often associated with an accumulation of actin and nonmuscle myosin II around the wound, forming a purse string. The role of actomyosin networks in generating mechanical force during wound repair is not well understood. Here we investigate the mechanisms of force generation during wound repair in the epidermis of early and late Drosophila embryos. We find that wound closure is faster in early embryos, where, in addition to a purse string around the wound, actomyosin networks at the medial cortex of the wounded cells contribute to rapid wound repair. Laser ablation demonstrates that both medial and purse-string actomyosin networks generate contractile force. Quantitative analysis of protein localization dynamics during wound closure indicates that the rapid contraction of medial actomyosin structures during wound repair in early embryos involves disassembly of the actomyosin network. By contrast, actomyosin purse strings in late embryos contract more slowly in a mechanism that involves network condensation. We propose that the combined action of two force-generating structures--a medial actomyosin network and an actomyosin purse string--contributes to the increased efficiency of wound repair in the early embryo.This work was supported by a W. M. Keck Foundation Distinguished Young Scholar in Medical Research Award to J.A.Z., startup funds from the University of Toronto and the Hospital for Sick Children to R.F.G., and grants from the Canada Foundation for Innovation and the Ontario Research Fund to R.F.G. J.A.Z. is an Early Career Scientist of the Howard Hughes Medical Institute

    Oscillatory behaviors and hierarchical assembly of contractile structures in intercalating cells

    No full text
    Fluctuations in the size of the apical cell surface have been associated with apical constriction and tissue invagination. However, it is currently not known if apical oscillatory behaviors are a unique property of constricting cells or if they constitute a universal feature of the force balance between cells in multicellular tissues. Here, we set out to determine whether oscillatory cell behaviors occur in parallel with cell intercalation during the morphogenetic process of axis elongation in the Drosophila embryo. We applied multi-color, time-lapse imaging of living embryos and SIESTA, an integrated tool for automated and semi-automated cell segmentation, tracking, and analysis of image sequences. Using SIESTA, we identified cycles of contraction and expansion of the apical surface in intercalating cells and characterized them at the molecular, cellular, and tissue scales. We demonstrate that apical oscillations are anisotropic, and this anisotropy depends on the presence of intact cell-cell junctions and spatial cues provided by the anterior-posterior patterning system. Oscillatory cell behaviors during axis elongation are associated with the hierarchical assembly and disassembly of contractile actomyosin structures at the medial cortex of the cell, with actin localization preceding myosin II and with the localization of both proteins preceding changes in cell shape. We discuss models to explain how the architecture of cytoskeletal networks regulates their contractile behavior and the mechanisms that give rise to oscillatory cell behaviors in intercalating cells.We thank Sérgio Simões for designing primers to generate double-stranded RNA against α-catenin. We are grateful to Karen Kasza, Athea Vichas and Richard Zallen for comments on the manuscript. FlyBase provided important information used in this work. This work was supported by a W M Keck Foundation Distinguished Young Scholar in Medical Research Award and NIH/NIGMS R01 grant GM079340 to JAZ. JAZ is an Early Career Scientist of the Howard Hughes Medical Institute
    corecore