8 research outputs found

    Distinguishing the Impacts of Inadequate Prey and Vessel Traffic on an Endangered Killer Whale (Orcinus orca) Population

    Get PDF
    Managing endangered species often involves evaluating the relative impacts of multiple anthropogenic and ecological pressures. This challenge is particularly formidable for cetaceans, which spend the majority of their time underwater. Noninvasive physiological approaches can be especially informative in this regard. We used a combination of fecal thyroid (T3) and glucocorticoid (GC) hormone measures to assess two threats influencing the endangered southern resident killer whales (SRKW; Orcinus orca) that frequent the inland waters of British Columbia, Canada and Washington, U.S.A. Glucocorticoids increase in response to nutritional and psychological stress, whereas thyroid hormone declines in response to nutritional stress but is unaffected by psychological stress. The inadequate prey hypothesis argues that the killer whales have become prey limited due to reductions of their dominant prey, Chinook salmon (Oncorhynchus tshawytscha). The vessel impact hypothesis argues that high numbers of vessels in close proximity to the whales cause disturbance via psychological stress and/or impaired foraging ability. The GC and T3 measures supported the inadequate prey hypothesis. In particular, GC concentrations were negatively correlated with short-term changes in prey availability. Whereas, T3 concentrations varied by date and year in a manner that corresponded with more long-term prey availability. Physiological correlations with prey overshadowed any impacts of vessels since GCs were lowest during the peak in vessel abundance, which also coincided with the peak in salmon availability. Our results suggest that identification and recovery of strategic salmon populations in the SRKW diet are important to effectively promote SRKW recovery

    Modulation in Persistent Organic Pollutant Concentration and Profile by Prey Availability and Reproductive Status in Southern Resident Killer Whale Scat Samples

    No full text
    Persistent organic pollutants (POPs), specifically PCBs, PBDEs, and DDTs, in the marine environment are well documented, however accumulation and mobilization patterns at the top of the food-web are poorly understood. This study broadens the understanding of POPs in the endangered Southern Resident killer whale population by addressing modulation by prey availability and reproductive status, along with endocrine disrupting effects. A total of 140 killer whale scat samples collected from 54 unique whales across a 4 year sampling period (2010–2013) were analyzed for concentrations of POPs. Toxicant measures were linked to pod, age, and birth order in genotyped individuals, prey abundance using open-source test fishery data, and pregnancy status based on hormone indices from the same sample. Toxicant concentrations were highest and had the greatest potential for toxicity when prey abundance was the lowest. In addition, these toxicants were likely from endogenous lipid stores. Bioaccumulation of POPs increased with age, with the exception of presumed nulliparous females. The exceptional pattern may be explained by females experiencing unobserved neonatal loss. Transfer of POPs through mobilization of endogenous lipid stores during lactation was highest for first-borns with diminished transfer to subsequent calves. Contrary to expectation, POP concentrations did not demonstrate an associated disruption of thyroid hormone, although this association may have been masked by impacts of prey abundance on thyroid hormone concentrations. The noninvasive method for measuring POP concentrations in killer whales through scat employed in this study may improve toxicant monitoring in the marine environment and promote conservation efforts

    Physiological stress correlates with year, Chinook availability, vessel abundance and an interaction between Chinook and vessel abundance.

    No full text
    <p>According to the best-fit mixed effects model, glucocorticoid concentrations decreased with increased Chinook salmon CPUE, after taking into account a 10-day lag time for fish to swim from the study site to the test fishery (column A). The best-fit model also includes an interaction between Chinook counts and vessel abundance on glucocorticoids, whereby fecal glucocortiods are always high at times of low Chinook counts. However, an increase in glucocorticoids with increasing vessel abundance is observed only during times of relatively high Chinook counts (column B set to the Chinook value indicated by the vertical line in the corresponding panel of column A). The y-axis represents glucocorticoid concentration marginal means predicted from the best-fit model. The hashed blue lines indicate 95% confidence intervals. Vertical red dotted lines indicate Julian day 230 (August 18), the time of maximum vessel traffic and approximately ten days before the maximum Chinook salmon catch each year. Horizontal red dotted lines indicate dependent variable marginal means for each year on day 230 within the model.</p
    corecore