12 research outputs found

    An Experimental Model of Prostatic Inflammation for Drug Discovery

    Get PDF
    There is increasing evidence to support a significant role for chronic non-bacterial, prostatic inflammation in the development of human voiding dysfunction and prostate cancer. Their increased prevalence with age suggests that the decrease of testosterone concentration and/or the ratio of testosterone-to-estradiol in serum may have a role in their development. The main objective of this study was to explore prostatic inflammation and its relationship with voiding dysfunction and prostate carcinogenesis by developing an experimental model. A novel selective estrogen receptor modulator (SERM), fispemifene, was tested for the prevention and treatment of prostatic inflammation in this model. Combined treatment of adult Noble rats with testosterone and estradiol for 3 to 6 weeks induced gradually developing prostatic inflammation in the dorsolateral prostatic lobes. Inflammatory cells, mainly T-lymphocytes, were first seen around capillaries. Thereafter, the lymphocytes migrated into the stroma and into periglandular space. When the treatment time was extended to 13 weeks, the number of inflamed acini increased. Urodynamical recordings indicated voiding dysfunction. When the animals had an above normal testosterone and estradiol concentrations but still had a decreased testosterone-to-estradiol ratio in serum, they developed obstructive voiding. Furthermore, they developed precancerous lesions and prostate cancers in the ducts of the dorsolateral prostatic lobes. Interestingly, inflammatory infiltrates were observed adjacent to precancerous lesions but not in the adjacency of adenocarcinomas suggesting that inflammation has a role in the early stages of prostate carcinogenesis. Fispemifene, a novel SERM tested in this experimental model, showed anti-inflammatory action by attenuating the number of inflamed acini in the dorsolateral prostate. Fispemifene exhibited also antiestrogenic properties by decreasing expression of estrogen-induced biomarkers in the acinar epithelium. These findings suggest that SERMs could be considered as a new therapeutic possibility in the prevention and in the treatment of chronic prostatic inflammationSiirretty Doriast

    The Translational Role of Animal Models for Estrogen-Related Functional Bladder Outlet Obstruction and Prostatic Inflammation

    Get PDF
    The prevalence of LUTS and prostatic diseases increases with age both in humans and companion animals, suggesting that a common underlying cause of these conditions may be age-associated alterations in the balance of sex hormones. The symptoms are present with different and variable micturition dysfunctions and can be assigned to different clinical conditions including bladder outlet obstruction (BOO). LUTS may also be linked to chronic non-bacterial prostatitis/chronic pelvic pain syndrome (CP/CPPS), but the relationship between these conditions is unknown. This review summarizes the preclinical data that supports a role for excessive estrogen action in the development of obstructive voiding and nonbacterial prostatic inflammation. Preclinical studies that are emphasized in this review have unequivocally indicated that estrogens can induce functional and structural changes resembling those seen in human diseases. Recognizing excessive estrogen action as a possible hormonal basis for the effects observed at multiple sites in the LUT may inspire the development of innovative treatment options for human and animal patients with LUTS associated with functional BOO and CP/CPPS

    Insights into immuno-oncology drug development landscape with focus on bone metastasis

    Get PDF
    Bone is among the main sites of metastasis in breast, prostate and other major cancers. Bone metastases remain incurable causing high mortality, severe skeletal-related effects and decreased quality of life. Despite the success of immunotherapies in oncology, no immunotherapies are approved for bone metastasis and no clear benefit has been observed with approved immunotherapies in treatment of bone metastatic disease. Therefore, it is crucial to consider unique features of tumor microenvironment in bone metastasis when developing novel therapies. The vicious cycle of bone metastasis, referring to crosstalk between tumor and bone cells that enables the tumor cells to grow in the bone microenvironment, is a well-established concept. Very recently, a novel osteoimmuno-oncology (OIO) concept was introduced to the scientific community. OIO emphasizes the significance of interactions between tumor, immune and bone cells in promoting tumor growth in bone metastasis, and it can be used to reveal the most promising targets for bone metastasis. In order to provide an insight into the current immuno-oncology drug development landscape, we used 1stOncology database, a cancer drug development resource to identify novel immunotherapies in preclinical or clinical development for breast and prostate cancer bone metastasis. Based on the database search, 24 immunotherapies were identified in preclinical or clinical development that included evaluation of effects on bone metastasis. This review provides an insight to novel immuno-oncology drug development in the context of bone metastasis. Bone metastases can be approached using different modalities, and tumor microenvironment in bone provides many potential targets for bone metastasis. Noting current increasing interest in the field of OIO, more therapeutic opportunities that primarily target bone metastasis are expected in the future

    Immunotherapies and Metastatic Cancers: Understanding Utility and Predictivity of Human Immune Cell Engrafted Mice in Preclinical Drug Development

    No full text
    Metastases cause high mortality in several cancers and immunotherapies are expected to be effective in the prevention and treatment of metastatic disease. However, only a minority of patients benefit from immunotherapies. This creates a need for novel therapies that are efficacious regardless of the cancer types and metastatic environments they are growing in. Preclinical immuno-oncology models for studying metastases have long been limited to syngeneic or carcinogenesis-inducible models that have murine cancer and immune cells. However, the translational power of these models has been questioned. Interactions between tumor and immune cells are often species-specific and regulated by different cytokines in mice and humans. For increased translational power, mice engrafted with functional parts of human immune system have been developed. These humanized mice are utilized to advance understanding the role of immune cells in the metastatic process, but increasingly also to study the efficacy and safety of novel immunotherapies. From these aspects, this review will discuss the role of immune cells in the metastatic process and the utility of humanized mouse models in immuno-oncology research for metastatic cancers, covering several models from the perspective of efficacy and safety of immunotherapies

    Fispemifene [Z-2-{2-[4-(4-Chloro-1,2-diphenylbut-1-enyl)phenoxy]ethoxy}-ethanol], a novel selective estrogen receptor modulator, attenuates glandular inflammation in an animal model of chronic nonbacterial prostatitis

    No full text
    The anti-inflammatory and antiestrogenic action of fispemifene [Z-2-{2-[4-(4-chloro-1,2-diphenylbut-1-enyl)phenoxy]ethoxy}ethanol], a novel selective estrogen receptor modulator ( SERM), was tested on the Noble rat model of chronic nonbacterial prostatic inflammation with cellular composition and inflammation patterns similar to those described in human prostatitis. Inflammation was assessed by counting perivascular and stromal infiltrates and the number of inflamed acini. Furthermore, the aggressiveness of inflammation was assessed on the basis of the relation of lymphocytes to the acinar epithelium. The immunohistochemical expression of progesterone receptor ( PR) and Fos-related antigen 2 (Fra2), prolactin concentration in serum, and the weights of the seminal vesicles and pituitary glands were used as endpoints of estrogen action. Fispemifene significantly attenuated the glandular form of inflammation induced in the dorsolateral prostatic lobes (DLP) in the hormonal milieu of the decreased androgen/estrogen ratio. The anti-inflammatory action was seen in the decreased number of acini containing intraluminal neutrophils. As signs of antiestrogenic action, fispemifene blocked estrogen-induced expression of PR and Fra2 in the acinar epithelium of the DLP, and it decreased prolactin concentration in serum and the relative weights of the seminal vesicles and pituitary glands. Because fispemifene exhibited both antiestrogenic and anti-inflammatory action in the prostate, this experimental study suggests that SERMs could be considered as a new therapeutic option in the treatment and prevention of prostatic inflammation

    Osteoimmuno-Oncology: Therapeutic Opportunities for Targeting Immune Cells in Bone Metastasis

    No full text
    Immunotherapies provide a potential treatment option for currently incurable bone metastases. Bone marrow is an important secondary lymphoid organ with a unique immune contexture. Even at non-disease state immune cells and bone cells interact with each other, bone cells supporting the development of immune cells and immune cells regulating bone turnover. In cancer, tumor cells interfere with this homeostatic process starting from formation of pre-metastatic niche and later supporting growth of bone metastases. In this review, we introduce a novel concept osteoimmuno-oncology (OIO), which refers to interactions between bone, immune and tumor cells in bone metastatic microenvironment. We also discuss therapeutic opportunities of targeting immune cells in bone metastases, and associated efficacy and safety concerns

    Inflammation and epithelial alterations in rat prostate: impact of the androgen to oestrogen ratio

    No full text
    P>Chronic non-bacterial prostatitis may offer new insights into the pathogenesis of human benign prostatic hyperplasia and prostate cancer and the strategies for their treatment and prevention. The potential significance of androgen replacement therapy in terms of the reversal of oestradiol (E(2))-induced inflammatory reaction was studied in the dorsolateral prostate (DLP) of the Noble rat. Castrated Noble rats were treated with E(2) and different doses of androgens [dihydrotestosterone (DHT) and testosterone (T)] to achieve an elevated concentration of E(2) and a wide range of the androgen-to-oestradiol ratios in serum. After the 3-week treatment, inflammatory changes in the DLP were classified and counted. Oestrogen receptor alpha (ER alpha), progesterone receptor (PR), fos-related antigen-2 (Fra2), Ki-67 and P63 were immunocytochemically stained. T, E(2) and prolactin concentrations in serum were measured and the relative weights of the seminal vesicles and pituitary glands and microscopic structures of the DLP and seminal vesicle ducts were determined. Hypoandrogenic doses of DHT (judged on the basis of seminal vesicle weight gain), dose-dependently increased the number of perivascular and stromal inflammatory infiltrates. T and DHT were anti-inflammatory at the doses which normalized or over stimulated the growth of the seminal vesicles. As signs of anti-oestrogenicity, androgens dose-dependently decreased the number and distribution of the ER alpha and PR-positive cells at proinflammatory concentrations. Anti-inflammatory concentrations were needed to reduce the expression of Fra2, E(2)-increased prolactin concentration in serum and pituitary weight. The androgen concentrations required to prevent proinflammatory and epithelial responses to E(2) in the presence of elevated E(2) concentrations may subject the accessory sex glands to more intense androgenic stimulation than is normal for the male. The androgen-resistant endpoints of oestrogen action (body weight reduction and hyperplasia of seminal vesicle ducts) further indicate limitations in the possible preventive effects of androgen-replacement therapy

    Fispemifene [ Z

    No full text

    Prostatic inflammation and obstructive voiding in the adult Noble rat: Impact of the testosterone to estradiol ratio in serum

    No full text
    BACKGROUND. The age-related decline of the testosterone to estradiol (T-to-E-2) ratio in serum is associated with the increased prevalence of prostatic inflammation and lower urinary tract symptoms suggesting obstructive voiding. The impact of the T-to-E-2 ratio on the development and reversal of non-bacterial prostatic inflammation and obstructive voiding was tested in adult Noble rats

    Human Immune System Increases Breast Cancer-Induced Osteoblastic Bone Growth in a Humanized Mouse Model without Affecting Normal Bone

    No full text
    Bone metastases are prevalent in many common cancers such as breast, prostate, and lung cancers, and novel therapies for treating bone metastases are needed. Human immune system-engrafted models are used in immuno-oncology (IO) studies for subcutaneous cancer cell or patient-derived xenograft implantations that mimic primary tumor growth. Novel efficacy models for IO compounds on bone metastases need to be established. The study was performed using CIEA NOG (NOG) mice engrafted with human CD34+ hematopoietic stem cells (huNOG) and age-matched immunodeficient NOG mice. Bone phenotyping was performed to evaluate baseline differences. BT-474 human breast cancer cells were inoculated into the tibia bone marrow, and cancer-induced bone changes were monitored by X-ray imaging. Bone content and volume were analyzed by dual X-ray absorptiometry and microcomputed tomography. Tumor-infiltrating lymphocytes (TILs) and the expression of immune checkpoint markers were analyzed by immunohistochemistry. Bone phenotyping showed no differences in bone architecture or volume of the healthy bones in huNOG and NOG mice, but the bone marrow fat was absent in huNOG mice. Fibrotic areas were observed in the bone marrow of some huNOG mice. BT-474 tumors induced osteoblastic bone growth. Bone lesions appeared earlier and were larger, and bone mineral density was higher in huNOG mice. huNOG mice had a high number of human CD3-, CD4-, and CD8-positive T cells and CD20-positive B cells in immune-related organs. A low number of TILs and PD-1-positive cells and low PD-L1 expression were observed in the BT-474 tumors at the endpoint. This study reports characterization of the first breast cancer bone growth model in huNOG mice. BT-474 tumors represent a “cold” tumor with a low number of TILs. This model can be used for evaluating the efficacy of combination treatments of IO therapies with immune-stimulatory compounds or therapeutic approaches on bone metastatic breast cancer
    corecore