579 research outputs found

    Segregation by thermal diffusion of an intruder in a moderately dense granular fluid

    Full text link
    A solution of the inelastic Enskog equation that goes beyond the weak dissipation limit and applies for moderate densities is used to determine the thermal diffusion factor of an intruder immersed in a dense granular gas under gravity. This factor provides a segregation criterion that shows the transition between the Brazil-nut effect (BNE) and the reverse Brazil-nut effect (RBNE) by varying the parameters of the system (masses, sizes, density and coefficients of restitution). The form of the phase-diagrams for the BNE/RBNE transition depends sensitively on the value of gravity relative to the thermal gradient, so that it is possible to switch between both states for given values of the parameters of the system. Two specific limits are considered with detail: (i) absence of gravity, and (ii) homogeneous temperature. In the latter case, after some approximations, our results are consistent with previous theoretical results derived from the Enskog equation. Our results also indicate that the influence of dissipation on thermal diffusion is more important in the absence of gravity than in the opposite limit. The present analysis extends previous theoretical results derived in the dilute limit case [V. Garz\'o, Europhys. Lett. {\bf 75}, 521 (2006)] and is consistent with the findings of some recent experimental results.Comment: 10 figure

    Tracer diffusion in granular shear flows

    Full text link
    Tracer diffusion in a granular gas in simple shear flow is analyzed. The analysis is made from a perturbation solution of the Boltzmann kinetic equation through first order in the gradient of the mole fraction of tracer particles. The reference state (zeroth-order approximation) corresponds to a Sonine solution of the Boltzmann equation, which holds for arbitrary values of the restitution coefficients. Due to the anisotropy induced in the system by the shear flow, the mass flux defines a diffusion tensor DijD_{ij} instead of a scalar diffusion coefficient. The elements of this tensor are given in terms of the restitution coefficients and mass and size ratios. The dependence of the diffusion tensor on the parameters of the problem is illustrated in the three-dimensional case. The results show that the influence of dissipation on the elements DijD_{ij} is in general quite important, even for moderate values of the restitution coefficients. In the case of self-diffusion (mechanically equivalent particles), the trends observed in recent molecular dynamics simulations are similar to those obtained here from the Boltzmann kinetic theory.Comment: 5 figure

    Limitations of the heavy-baryon expansion as revealed by a pion-mass dispersion relation

    Full text link
    The chiral expansion of nucleon properties such as mass, magnetic moment, and magnetic polarizability are investigated in the framework of chiral perturbation theory, with and without the heavy-baryon expansion. The analysis makes use of a pion-mass dispersion relation, which is shown to hold in both frameworks. The dispersion relation allows an ultraviolet cutoff to be implemented without compromising the symmetries. After renormalization, the leading-order heavy-baryon loops demonstrate a stronger dependence on the cutoff scale, which results in weakened convergence of the expansion. This conclusion is tested against the recent results of lattice quantum chromodynamics simulations for nucleon mass and isovector magnetic moment. In the case of the polarizability, the situation is even more dramatic as the heavy-baryon expansion is unable to reproduce large soft contributions to this quantity. Clearly, the heavy-baryon expansion is not suitable for every quantity.Comment: Accepted for publication in EPJ C. Made changes based on referee comments: clarifying sentences to conclusion 1. of Section IV, beginning of Section V, and new footnote in Section VI, page 8. Added more detailed explanation in paragraph 4 of Section III. Added citations of Phys.Rev. D60, 034014, and Phys.Lett. B716, 33

    Hydrodynamics of thermal granular convection

    Full text link
    A hydrodynamic theory is formulated for buoyancy-driven ("thermal") granular convection, recently predicted in molecular dynamic simulations and observed in experiment. The limit of a dilute flow is considered. The problem is fully described by three scaled parameters. The convection occurs via a supercritical bifurcation, the inelasticity of the collisions being the control parameter. The theory is expected to be valid for small Knudsen numbers and nearly elastic grain collisions.Comment: 4 pages, 4 EPS figures, some details adde

    Symmetry-breaking instability in a prototypical driven granular gas

    Full text link
    Symmetry-breaking instability of a laterally uniform granular cluster (strip state) in a prototypical driven granular gas is investigated. The system consists of smooth hard disks in a two-dimensional box, colliding inelastically with each other and driven, at zero gravity, by a "thermal" wall. The limit of nearly elastic particle collisions is considered, and granular hydrodynamics with the Jenkins-Richman constitutive relations is employed. The hydrodynamic problem is completely described by two scaled parameters and the aspect ratio of the box. Marginal stability analysis predicts a spontaneous symmetry breaking instability of the strip state, similar to that predicted recently for a different set of constitutive relations. If the system is big enough, the marginal stability curve becomes independent of the details of the boundary condition at the driving wall. In this regime, the density perturbation is exponentially localized at the elastic wall opposite to the thermal wall. The short- and long-wavelength asymptotics of the marginal stability curves are obtained analytically in the dilute limit. The physics of the symmetry-breaking instability is discussed.Comment: 11 pages, 14 figure

    Onset of thermal convection in a horizontal layer of granular gas

    Full text link
    The Navier-Stokes granular hydrodynamics is employed for determining the threshold of thermal convection in an infinite horizontal layer of granular gas. The dependence of the convection threshold, in terms of the inelasticity of particle collisions, on the Froude and Knudsen numbers is found. A simple necessary condition for convection is formulated in terms of the Schwarzschild's criterion, well-known in thermal convection of (compressible) classical fluids. The morphology of convection cells at the onset is determined. At large Froude numbers, the Froude number drops out of the problem. As the Froude number goes to zero, the convection instability turns into a recently discovered phase separation instability.Comment: 6 pages, 6 figures. An extended version. A simple and universal necessary criterion for convection presente

    Navier-Stokes transport coefficients of dd-dimensional granular binary mixtures at low density

    Full text link
    The Navier-Stokes transport coefficients for binary mixtures of smooth inelastic hard disks or spheres under gravity are determined from the Boltzmann kinetic theory by application of the Chapman-Enskog method for states near the local homogeneous cooling state. It is shown that the Navier-Stokes transport coefficients are not affected by the presence of gravity. As in the elastic case, the transport coefficients of the mixture verify a set of coupled linear integral equations that are approximately solved by using the leading terms in a Sonine polynomial expansion. The results reported here extend previous calculations [V. Garz\'o and J. W. Dufty, Phys. Fluids {\bf 14}, 1476 (2002)] to an arbitrary number of dimensions. To check the accuracy of the Chapman-Enskog results, the inelastic Boltzmann equation is also numerically solved by means of the direct simulation Monte Carlo method to evaluate the diffusion and shear viscosity coefficients for hard disks. The comparison shows a good agreement over a wide range of values of the coefficients of restitution and the parameters of the mixture (masses and sizes).Comment: 6 figures, to be published in J. Stat. Phy

    Novae Ejecta as Colliding Shells

    Full text link
    Following on our initial absorption-line analysis of fifteen novae spectra we present additional evidence for the existence of two distinct components of novae ejecta having different origins. As argued in Paper I one component is the rapidly expanding gas ejected from the outer layers of the white dwarf by the outburst. The second component is pre-existing outer, more slowly expanding circumbinary gas that represents ejecta from the secondary star or accretion disk. We present measurements of the emission-line widths that show them to be significantly narrower than the broad P Cygni profiles that immediately precede them. The emission profiles of novae in the nebular phase are distinctly rectangular, i.e., strongly suggestive of emission from a relatively thin, roughly spherical shell. We thus interpret novae spectral evolution in terms of the collision between the two components of ejecta, which converts the early absorption spectrum to an emission-line spectrum within weeks of the outburst. The narrow emission widths require the outer circumbinary gas to be much more massive than the white dwarf ejecta, thereby slowing the latter's expansion upon collision. The presence of a large reservoir of circumbinary gas at the time of outburst is suggestive that novae outbursts may sometime be triggered by collapse of gas onto the white dwarf, as occurs for dwarf novae, rather than steady mass transfer through the inner Lagrangian point.Comment: 12 pages, 3 figures; Revised manuscript; Accepted for publication in Astrophysics & Space Scienc

    NMR Experiments on a Three-Dimensional Vibrofluidized Granular Medium

    Full text link
    A three-dimensional granular system fluidized by vertical container vibrations was studied using pulsed field gradient (PFG) NMR coupled with one-dimensional magnetic resonance imaging (MRI). The system consisted of mustard seeds vibrated vertically at 50 Hz, and the number of layers N_ell <= 4 was sufficiently low to achieve a nearly time-independent granular fluid. Using NMR, the vertical profiles of density and granular temperature were directly measured, along with the distributions of vertical and horizontal grain velocities. The velocity distributions showed modest deviations from Maxwell-Boltzmann statistics, except for the vertical velocity distribution near the sample bottom which was highly skewed and non-Gaussian. Data taken for three values of N_ell and two dimensionless accelerations Gamma=15,18 were fit to a hydrodynamic theory, which successfully models the density and temperature profiles including a temperature inversion near the free upper surface.Comment: 14 pages, 15 figure

    Delivery and quantification of hydrogen peroxide generated via cold atmospheric pressure plasma through biological material

    Get PDF
    The ability of plasma-generated hydrogen peroxide (H 2O 2) to traverse bacterial biofilms and the subsequent fate of the generated H 2O 2 has been investigated. An in vitro model, comprising a nanoporous membrane impregnated with artificial wound fluid and biofilms of varying maturity was treated with a helium-driven, cold atmospheric pressure plasma (CAP) jet. The concentration of H 2O 2 generated below the biofilms was quantified. The results showed that the plasma-generated H 2O 2 interacted significantly with the biofilm, thus exhibiting a reduction in concentration across the underlying nanoporous membrane. Biofilm maturity exhibited a significant effect on the penetration depth of H 2O 2, suggesting that well established, multilayer biofilms are likely to offer a shielding effect with respect to cells located in the lower layers of the biofilm, thus rendering them less susceptible to plasma disinfection. This may prove clinically significant in the plasma treatment of chronic, deep tissue infections such as diabetic and venous leg ulcers. Our results are discussed in the context of plasma-biofilm interactions, with respect to the fate of the longer lived reactive species generated by CAP, such as H 2O
    corecore