15 research outputs found

    Cold-Flow Study of Low Frequency Pressure Instability in Hybrid Rocket Motors

    Get PDF
    Past experience with hybrid rockets has shown that certain motor operating conditions are conducive to the formation of low frequency pressure oscillations, or flow instabilities, within the motor. Both past and present work in the hybrid propulsion community acknowledges deficiencies in the understanding of such behavior, though it seems probable that the answer lies in an interaction between the flow dynamics and the combustion heat release. Knowledge of the fundamental flow dynamics is essential to the basic understanding of the overall stability problem. A first step in this direction was a study conducted at NASA Marshall Space Flight Center (MSFC), centered around a laboratory-scale two dimensional water flow model of a hybrid rocket motor. Principal objectives included: (1) visualization of flow and measurement of flow velocity distributions: (2) assessment of the importance of shear layer instabilities in driving motor pressure oscillations; (3) determination of the interactions between flow induced shear layers with the mainstream flow, the secondary (wall) throughflow, and solid boundaries; (4) investigation of the interactions between wall flow oscillations and the mainstream flow pressure distribution

    A preliminary analysis of low frequency pressure oscillations in hybrid rocket motors

    Get PDF
    Past research with hybrid rockets has suggested that certain motor operating conditions are conducive to the formation of pressure oscillations, or flow instabilities, within the motor combustion chamber. These combustion-related vibrations or pressure oscillations may be encountered in virtually any type of rocket motor and typically fall into three frequency ranges: low frequency oscillations (0-300 Hz); intermediate frequency oscillations (400-1000 Hz); and high frequency oscillations (greater than 1000 Hz). In general, combustion instability is characterized by organized pressure oscillations occurring at well-defined intervals with pressure peaks that may maintain themselves, grow, or die out. Usually, such peaks exceed +/- 5% of the mean chamber pressure. For hybrid motors, these oscillations have been observed to grow to a limiting amplitude which may be dependent on factors such as fuel characteristics, oxidizer injector characteristics, average chamber pressure, oxidizer mass flux, combustion chamber length, and grain geometry. The approach taken in the present analysis is to develop a modified chamber length, L, instability theory which accounts for the relationship between pressure and oxidizer to fuel concentration ratio in the motor

    Analysis of advanced solid rocket motor ignition phenomena

    Get PDF
    This report presents the results obtained from an experimental analysis of the flow field in the slots of the star grain section in the head-end of the advanced solid rocket motor during the ignition transient. This work represents an extension of the previous tests and analysis to include the effects of using a center port in conjunction with multiple canted igniter ports. The flow field measurements include oil smear data on the star slot walls, pressure and heat transfer coefficient measurements on the star slot walls and velocity measurements in the star slot

    Ignition Transient Calculations in the Space Shuttle Solid Rocket Motor

    Get PDF
    The work presented is part of an effort to develop a multidimensional ignition transient model for large solid propellant rocket motors. On the Space Shuttle, the ignition transient in the slot is induced when the igniter, itself a small rocket motor, is fired into the head-end portion of the main rocket motor. The computational results presented in this paper consider two different igniter configurations. The first configuration is a simulated Space Shuttle RSRM igniter which has one central nozzle that is parallel to the centerline of the motor. The second igniter configuration has a nozzle which is canted at an angle of 45 deg from the centerline of the motor. This paper presents a computational fluid dynamic (CFD) analyses of certain flow field characteristics inside the solid propellant star grain slot of the Space Shuttle during the ignition transient period of operation for each igniter configuration. The majority of studies made to date regarding ignition transient performance in solid rocket motors have concluded that the key parameter to be determined is the heat transfer rate to the propellant surface and hence the heat transfer coefficient between the gas and the propellant. In this paper the heat transfer coefficients, pressure and velocity distributions are calculated in the star slot. In order to validate the computational method and to attempt to establish a correlation between the flow field characteristics and the heat transfer rates a series of cold flow experimental investigations were conducted. The results of these experiments show excellent qualitative and quantitative agreement with the pressure and velocity distributions obtained from the CFD analysis. The CFD analysis utilized a classical pipe flow type correlation for the heat transfer rates. The experimental results provide an excellent qualitative comparison with regard to spatial distribution of the heat transfer rates as a function of nozzle configuration and igniter pressure. The results indicate that from a quantitative point of view that the pipe flow correlation gives reasonably good results. Furthermore, there appears to be a direct correlation between igniter pressure and an average Reynolds number in the star grain slot. This may lead to a simple method for modifying the convection heat transfer correlation. Calculated results of pressure-vs-time for the first 200 msec of motor firing of the Space Shuttle RSRM support the trends shown for the heat transfer rate comparisons between the cold flow CFD and experimental data

    Analysis Supporting MSFC Cryostat Testing Unit

    Get PDF
    This report summarizes the results obtained from an analysis of the NASA Marshall Spaceflight Center (MSFC) cryostat testing unit. A finite element model was generated to determine both temperature distribution and stress distribution in the cryostat testing unit for load conditions supplied by MSFC. This report contains the results of that analysis

    Development of a new generation solid rocket motor ignition computer code

    Get PDF
    This report presents the results of experimental and numerical investigations of the flow field in the head-end star grain slots of the Space Shuttle Solid Rocket Motor. This work provided the basis for the development of an improved solid rocket motor ignition transient code which is also described in this report. The correlation between the experimental and numerical results is excellent and provides a firm basis for the development of a fully three-dimensional solid rocket motor ignition transient computer code

    TAL Performance and Mission Analysis in a CDL Capacitor Powered Direct-Drive Configuration

    No full text
    The goals of this research are (1) to prove the concept feasibility of a direct-drive electric propulsion system, and (2) to evaluate the performance and characteristics of a Russian TAL (Thruster with Anode Layer) operating in a long-pulse mode, powered by a capacitor-based power source developed at Space Power Institute. The TAL, designated D-55, is characterized by an external acceleration zone and is powered by a unique chemical double layer (CDL) capacitor bank with a capacitance of 4 F at a charge voltage of 400 V. Performance testing of this power supply on the TAL was conducted at NASA Lewis Research Center in Cleveland, OH. Direct thrust measurements of the TAL were obtained at CDL power levels ranging from 450 to 1750 W. The specific impulse encompassed a range from 1150 s to 2200 s, yielding thruster system efficiencies between 50 and 60%. Preliminary mission analysis of the CDL direct-drive concept and other electric propulsion options was performed for the ORACLE spacecraft in 6am/6pm and 12am/12pm, 300 km sun-synchronous orbits. The direct-drive option was competitive with the other systems by increasing available net mass between 5 and 42% and reducing two-year system wet mass between 18 and 63%. Overall, the electric propulsion power requirements for the satellite solar array were reduced between 57 and 91% depending oil the orbit evaluated The direct-drive, CDL capacitor-based concept in electric propulsion thus promises to be a highly-efficient, viable alternative for satellite operations in specific near-Earth missions

    Hybrid Particle Swarm: Pattern Search Optimizer for Rocket Propulsion Applications

    No full text

    Motion of particulate material ejected from a rotating space platform

    No full text
    corecore