27 research outputs found

    The many possible climates from the Paris Agreement’s aim of 1.5 °C warming

    Get PDF
    The United Nations’ Paris Agreement includes the aim of pursuing efforts to limit global warming to only 1.5 °C above pre-industrial levels. However, it is not clear what the resulting climate would look like across the globe and over time. Here we show that trajectories towards a ‘1.5 °C warmer world’ may result in vastly different outcomes at regional scales, owing to variations in the pace and location of climate change and their interactions with society’s mitigation, adaptation and vulnerabilities to climate change. Pursuing policies that are considered to be consistent with the 1.5 °C aim will not completely remove the risk of global temperatures being much higher or of some regional extremes reaching dangerous levels for ecosystems and societies over the coming decades

    Innovative approaches to genome editing in avian species

    No full text
    Abstract The tools available for genome engineering have significantly improved over the last 5 years, allowing scientist to make precise edits to the genome. Along with the development of these new genome editing tools has come advancements in technologies used to deliver them. In mammals genome engineering tools are typically delivered into in vitro fertilized single cell embryos which are subsequently cultured and then implanted into a recipient animal. In avian species this is not possible, so other methods have been developed for genome engineering in birds. The most common involves in vitro culturing of primordial germ cells (PGCs), which are cells that migrate through the embryonic circulatory system to the developing gonad and colonize the gonad, eventually differentiating into the gonadocytes which produce either sperm or ova. While in culture the PGCs can be modified to carry novel transgenes or gene edits, the population can be screened and enriched, and then transferred into a recipient embryo. The largest drawback of PGC culture is that culture methods do not transfer well across avian species, thus there are reliable culture methods for only a few species including the chicken. Two newer technologies that appear to be more easily adapted in a wider range of avian species are direct injection and sperm transfection assisted gene editing (STAGE). The direct injection method involves injecting genome engineering tools into the circulatory system of the developing embryo just prior to the developmental time point when the PGCs are migrating to the gonads. The genome engineering tools are complexed with transfection reagents, allowing for in vivo transfection of the PGCs. STAGE utilizes sperm transfection to deliver genome engineering tools directly to the newly fertilized embryo. Preliminary evidence indicates that both methodologies have the potential to be adapted for use in birds species other than the chicken, however further work is needed in this area

    Harnessing Intronic microRNA Structures to Improve Tolerance and Expression of shRNAs in Animal Cells

    No full text
    Exogenous RNA polymerase III (pol III) promoters are commonly used to express short hairpin RNA (shRNA). Previous studies have indicated that expression of shRNAs using standard pol III promoters can cause toxicity in vivo due to saturation of the native miRNA pathway. A potential way of mitigating shRNA-associated toxicity is by utilising native miRNA processing enzymes to attain tolerable shRNA expression levels. Here, we examined parallel processing of exogenous shRNAs by harnessing the natural miRNA processing enzymes and positioning a shRNA adjacent to microRNA107 (miR107), located in the intron 5 of the Pantothenate Kinase 1 (PANK1) gene. We developed a vector encoding the PANK1 intron containing miR107 and examined the expression of a single shRNA or multiple shRNAs. Using qRT-PCR analysis and luciferase assay-based knockdown assay, we confirmed that miR30-structured shRNAs have resulted in the highest expression and subsequent transcript knockdown. Next, we injected Hamburger and Hamilton stage 14–15 chicken embryos with a vector encoding multiple shRNAs and confirmed that the parallel processing was not toxic. Taken together, this data provides a novel strategy to harness the native miRNA processing pathways for shRNA expression. This enables new opportunities for RNAi based applications in animal species such as chickens

    Glycemic index, glycemic load, and cardiovascular disease and mortality

    No full text
    Background: Most data regarding the association between the glycemic index and cardiovascular disease come from high-income Western populations, with little information from non-Western countries with low or middle incomes. To fill this gap, data are needed from a large, geographically diverse population.Methods: This analysis includes 137,851 participants between the ages of 35 and 70 years living on five continents, with a median follow-up of 9.5 years. We used country-specific food-frequency questionnaires to determine dietary intake and estimated the glycemic index and glycemic load on the basis of the consumption of seven categories of carbohydrate foods. We calculated hazard ratios using multivariable Cox frailty models. The primary outcome was a composite of a major cardiovascular event (cardiovascular death, nonfatal myocardial infarction, stroke, and heart failure) or death from any cause.Results: In the study population, 8780 deaths and 8252 major cardiovascular events occurred during the follow-up period. After performing extensive adjustments comparing the lowest and highest glycemic-index quintiles, we found that a diet with a high glycemic index was associated with an increased risk of a major cardiovascular event or death, both among participants with preexisting cardiovascular disease (hazard ratio, 1.51; 95% confidence interval [CI], 1.25 to 1.82) and among those without such disease (hazard ratio, 1.21; 95% CI, 1.11 to 1.34). Among the components of the primary outcome, a high glycemic index was also associated with an increased risk of death from cardiovascular causes. The results with respect to glycemic load were similar to the findings regarding the glycemic index among the participants with cardiovascular disease at baseline, but the association was not significant among those without preexisting cardiovascular disease.Conclusions: In this study, a diet with a high glycemic index was associated with an increased risk of cardiovascular disease and death. (Funded by the Population Health Research Institute and others.)

    Associations of the glycaemic index and the glycaemic load with risk of type 2 diabetes in 127 594 people from 20 countries (PURE): A prospective cohort study

    No full text
    Background: The association between the glycaemic index and the glycaemic load with type 2 diabetes incidence is controversial. We aimed to evaluate this association in an international cohort with diverse glycaemic index and glycaemic load diets.Methods: The PURE study is a prospective cohort study of 127 594 adults aged 35-70 years from 20 high-income, middle-income, and low-income countries. Diet was assessed at baseline using country-specific validated food frequency questionnaires. The glycaemic index and the glycaemic load were estimated on the basis of the intake of seven categories of carbohydrate-containing foods. Participants were categorised into quintiles of glycaemic index and glycaemic load. The primary outcome was incident type 2 diabetes. Multivariable Cox Frailty models with random intercepts for study centre were used to calculate hazard ratios (HRs).Findings: During a median follow-up of 11·8 years (IQR 9·0-13·0), 7326 (5·7%) incident cases of type 2 diabetes occurred. In multivariable adjusted analyses, a diet with a higher glycaemic index was significantly associated with a higher risk of diabetes (quintile 5 vs quintile 1; HR 1·15 [95% CI 1·03-1·29]). Participants in the highest quintile of the glycaemic load had a higher risk of incident type 2 diabetes compared with those in the lowest quintile (HR 1·21, 95% CI 1·06-1·37). The glycaemic index was more strongly associated with diabetes among individuals with a higher BMI (quintile 5 vs quintile 1; HR 1·23 [95% CI 1·08-1·41]) than those with a lower BMI (quintile 5 vs quintile 1; 1·10 [0·87-1·39]; p interaction=0·030).Interpretation: Diets with a high glycaemic index and a high glycaemic load were associated with a higher risk of incident type 2 diabetes in a multinational cohort spanning five continents. Our findings suggest that consuming low glycaemic index and low glycaemic load diets might prevent the development of type 2 diabetes.Funding: Full funding sources are listed at the end of the Article

    Interferon Signaling in Chickens Plays a Crucial Role in Inhibiting Influenza Replication in DF1 Cells

    No full text
    Influenza A viruses (IAV) pose a constant threat to human and poultry health. Of particular interest are the infections caused by highly pathogenic avian influenza (HPAI) viruses, such as H5N1, which cause significant production issues. In response to influenza infection, cells activate immune mechanisms that lead to increased interferon (IFN) production. To investigate how alterations in the interferon signaling pathway affect the cellular response to infection in the chicken, we used CRISPR/Cas9 to generate a chicken cell line that lacks a functional the type I interferon receptor (IFNAR1). We then assessed viral infections with the WSN strain of influenza. Cells lacking a functional IFNAR1 receptor showed reduced expression of the interferon stimulated genes (ISG) such as Protein Kinase R (PKR) and Myxovirus resistance (Mx) and were more susceptible to viral infection with WSN. We further investigated the role or IFNAR1 on low pathogenicity avian influenza (LPAI) strains (H7N9) and a HPAI strain (H5N1). Intriguingly, Ifnar−/− cells appeared more resistant than WT cells when infected with HPAI virus, potentially indicating a different interaction between H5N1 and the IFN signaling pathway. Our findings support that ChIFNAR1 is a key component of the chicken IFN signaling pathway and these data add contributions to the field of host-avian pathogen interaction and innate immunity in chickens

    In Vivo Inhibition of Marek’s Disease Virus in Transgenic Chickens Expressing Cas9 and gRNA against ICP4

    No full text
    Marek’s disease (MD), caused by MD herpesvirus (MDV), is an economically important disease in chickens. The efficacy of the existing vaccines against evolving virulent stains may become limited and necessitates the development of novel antiviral strategies to protect poultry from MDV strains with increased virulence. The CRISPR/Cas9 system has emerged as a powerful genome editing tool providing an opportunity to develop antiviral strategies for the control of MDV infection. Here, we characterized Tol2 transposon constructs encoding Cas9 and guide RNAs (gRNAs) specific to the immediate early infected-cell polypeptide-4 (ICP4) of MDV. We generated transgenic chickens that constitutively express Cas9 and ICP4-gRNAs (gICP4) and challenged them via intraabdominal injection of MDV-1 Woodlands strain passage-19 (p19). Transgenic chickens expressing both gRNA/Cas9 had a significantly reduced replication of MDV in comparison to either transgenic Cas9-only or the wild-type (WT) chickens. We further confirmed that the designed gRNAs exhibited sequence-specific virus interference in transgenic chicken embryo fibroblast (CEF) expressing Cas9/gICP4 when infected with MDV but not with herpesvirus of turkeys (HVT). These results suggest that CRISPR/Cas9 can be used as an antiviral approach to control MDV infection in chickens, allowing HVT to be used as a vector for recombinant vaccines

    In Vivo Inhibition of Marek’s Disease Virus in Transgenic Chickens Expressing Cas9 and gRNA against ICP4

    No full text
    Marek’s disease (MD), caused by MD herpesvirus (MDV), is an economically important disease in chickens. The efficacy of the existing vaccines against evolving virulent stains may become limited and necessitates the development of novel antiviral strategies to protect poultry from MDV strains with increased virulence. The CRISPR/Cas9 system has emerged as a powerful genome editing tool providing an opportunity to develop antiviral strategies for the control of MDV infection. Here, we characterized Tol2 transposon constructs encoding Cas9 and guide RNAs (gRNAs) specific to the immediate early infected-cell polypeptide-4 (ICP4) of MDV. We generated transgenic chickens that constitutively express Cas9 and ICP4-gRNAs (gICP4) and challenged them via intraabdominal injection of MDV-1 Woodlands strain passage-19 (p19). Transgenic chickens expressing both gRNA/Cas9 had a significantly reduced replication of MDV in comparison to either transgenic Cas9-only or the wild-type (WT) chickens. We further confirmed that the designed gRNAs exhibited sequence-specific virus interference in transgenic chicken embryo fibroblast (CEF) expressing Cas9/gICP4 when infected with MDV but not with herpesvirus of turkeys (HVT). These results suggest that CRISPR/Cas9 can be used as an antiviral approach to control MDV infection in chickens, allowing HVT to be used as a vector for recombinant vaccines
    corecore