878 research outputs found

    The off-Shell Electromagnetic Vertex of the Nucleon in Chiral Perturbation Theory

    Full text link
    We study the electromagnetic vertex of a nucleon in next-to-leading order chiral perturbation theory (CPT). We consider the case where one of the nucleons at the γ\gammaNN vertex is off its mass shell. We define relevant measures for the off-shell dependence in the limited kinematical range allowed, and analyze their expansion in the pion mass. The leading nonanalytic contributions are calculated to estimate their size.Comment: 12 pages (LaTeX), 1 figure (available upon request), NIKHEF 93-P

    Hydrodynamic Modes for Granular Gases

    Full text link
    The eigenfunctions and eigenvalues of the linearized Boltzmann equation for inelastic hard spheres (d=3) or disks (d=2) corresponding to d+2 hydrodynamic modes, are calculated in the long wavelength limit for a granular gas. The transport coefficients are identified and found to agree with those from the Chapman-Enskog solution. The dominance of hydrodynamic modes at long times and long wavelengths is studied via an exactly solvable kinetic model. A collisional continuum is bounded away from the hydrodynamic spectrum, assuring a hydrodynamic description at long times. The bound is closely related to the power law decay of the velocity distribution in the reference homogeneous cooling state

    A Technique for Tensile Fatigue and Creep Testing of Fiber-Reinforced Ceramics

    Full text link
    An experimental technique for the elevated temperature tensile fatigue and creep testing of fiber-reinforced ceramics is discussed. The experimental approach utilizes edge-loaded specimens with rectangular gage-sections. Novel furnace and grip designs which allow testing in air to 1500°C are provided. The specimen, furnace and grip designs discussed in the paper have been successfully used to test unidirectional and cross-ply SiCf/Si3N 4, SiCf/SiC, Cf/SiC and SiCf/calcium-aluminosilicate composites.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66679/2/10.1177_002199839202600608.pd

    Tracer diffusion in granular shear flows

    Full text link
    Tracer diffusion in a granular gas in simple shear flow is analyzed. The analysis is made from a perturbation solution of the Boltzmann kinetic equation through first order in the gradient of the mole fraction of tracer particles. The reference state (zeroth-order approximation) corresponds to a Sonine solution of the Boltzmann equation, which holds for arbitrary values of the restitution coefficients. Due to the anisotropy induced in the system by the shear flow, the mass flux defines a diffusion tensor DijD_{ij} instead of a scalar diffusion coefficient. The elements of this tensor are given in terms of the restitution coefficients and mass and size ratios. The dependence of the diffusion tensor on the parameters of the problem is illustrated in the three-dimensional case. The results show that the influence of dissipation on the elements DijD_{ij} is in general quite important, even for moderate values of the restitution coefficients. In the case of self-diffusion (mechanically equivalent particles), the trends observed in recent molecular dynamics simulations are similar to those obtained here from the Boltzmann kinetic theory.Comment: 5 figure

    Nucleons Properties at Finite Lattice Spacing in Chiral Perturbation Theory

    Full text link
    Properties of the proton and neutron are studied in partially-quenched chiral perturbation theory at finite lattice spacing. Masses, magnetic moments, the matrix elements of isovector twist-2 operators and axial-vector currents are examined at the one-loop level in a double expansion in the light-quark masses and the lattice spacing. This work will be useful in extrapolating the results of simulations using Wilson valence and sea quarks, as well as simulations using Wilson sea quarks and Ginsparg-Wilson valence quarks, to the continuum.Comment: 16 pages LaTe

    CP Violation in Hyperon Nonleptonic Decays within the Standard Model

    Get PDF
    We calculate the CP-violating asymmetries A(Lambda_-^0) and A(Xi_-^-) in nonleptonic hyperon decay within the Standard Model using the framework of heavy-baryon chiral perturbation theory (chiPT). We identify those terms that correspond to previous calculations and discover several errors in the existing literature. We present a new result for the lowest-order (in chiPT) contribution of the penguin operator to these asymmetries, as well as an estimate for the uncertainty of our result that is based on the calculation of the leading nonanalytic corrections.Comment: 21 pages, 2 figures; discussion clarified, results & conclusions unchanged, to appear in Phys. Rev.

    Status of three flavor baryon chiral perturbation theory

    Get PDF
    I review the present status of three flavor baryon chiral perturbation theory in the heavy fermion formalism. It is argued that precise calculations have to include all terms quadratic in the quark masses. As examples, I consider the chiral expansion of the octet baryon masses, the baryon magnetic moments and kaon photoproduction off nucleons.Comment: 16 pp, LaTeX, uses epsf and lamuphys.sty (appended), plenary talk, Workshop on ``Chiral Dynamics: Theory and Experiment'', Mainz, September 1997, to appear in the proceeding

    New Physics and CP Violation in Hyperon Nonleptonic Decays

    Full text link
    The sum of the CP-violating asymmetries A(Lambda_-^0) and A(Xi_-^-) in hyperon nonleptonic decays is presently being measured by the E871 experiment. We evaluate contributions to the asymmetries induced by chromomagnetic-penguin operators, whose coefficients can be enhanced in certain models of new physics. Incorporating recent information on the strong phases in Xi->Lambda pi decay, we show that new-physics contributions to the two asymmetries can be comparable. We explore how the upcoming results of E871 may constrain the coefficients of the operators. We find that its preliminary measurement is already better than the epsilon parameter of K-Kbar mixing in bounding the parity-conserving contributions.Comment: 12 pages, 2 figure

    Quark mass dependence of the nucleon axial-vector coupling constant

    Full text link
    We study the quark mass expansion of the axial-vector coupling constant g_A of the nucleon. The aim is to explore the feasibility of chiral effective field theory methods for extrapolation of lattice QCD results - so far determined at relatively large quark masses corresponding to pion masses larger than 0.6 GeV - down to the physical value of the pion mass. We compare two versions of non-relativistic chiral effective field theory: One scheme restricted to pion and nucleon degrees of freedom only, and an alternative approach which incorporates explicit Delta(1230) resonance degrees of freedom. It turns out that, in order to approach the physical value of g_A in a leading-one-loop calculation, the inclusion of the explicit Delta(1230) degrees of freedom is crucial. With information on important higher order couplings constrained from analyses of inelastic pion production processes, a chiral extrapolation function for g_A is obtained, which works well from the chiral limit across the physical point into the region of present lattice data. The resulting enhancement of our extrapolation function near the physical pion mass is found to arise from an interplay between long- and short- distance physics.Comment: 21 pages, LaTeX, 7 figure
    corecore