28 research outputs found

    Sustainable Smart Polymer Composite Materials: A Comprehensive Review

    Get PDF
    This review provides a thorough analysis of the progress made in smart polymer composite materials, which have recently been seen as potential game-changers in areas such as construction, aerospace, biomedical engineering, and energy. This article emphasizes the distinctive characteristics of these materials, including their responsiveness to stimuli like temperature, light, and pressure, and their potential uses in different industries. This paper also examines the difficulties and restrictions associated with the creation and utilization of smart polymer composite materials. This review seeks to provide a thorough understanding of smart polymer composite materials and their potential to offer innovative solutions for a variety of applications

    Machine Learning Techniques for the Design and Optimization of Polymer Composites: A Review

    Get PDF
    Polymer composites are employed in a variety of applications due to their distinctive characteristics. Nevertheless, designing and optimizing these materials can be a lengthy and resourceintensive process for low cost and sustainable materials. Machine learning has the potential to simplify this process by offering predictions of the characteristics of novel composite materials based on their microstructures. This review outlines machine learning techniques and highlights the potential of machine learning to improve the design and optimization of polymer composites. This review also examines the difficulties and restrictions of utilizing machine learning in this context and offers insights into potential future research paths in this field

    Distribution Dynamics in the US. A spatial perspective.

    Get PDF
    It is quite common in cross-sectional convergence analyses that data exhibit strong spatial dependence. While the literature adopting the regression approach is now fully aware that neglecting this feature may lead to inaccurate results and has therefore suggested a number of statistical tools for addressing the issue, research is only at a very initial stage within the distribution dynamics approach. In particular, in the continuous state-space framework, a few authors opted for spatial pre-filtering the data in order to guarantee the statistical properties of the estimates. In this paper, we follow an alternative route that starts from the idea that spatial dependence is not just noise but can be a substantive element of the data generating process. In particular, we develop a tool that, building on a mean-bias adjustment procedure established in the literature, explicitly allows for spatial dependence in distribution dynamics analysis thus eliminating the need for pre-filtering. Using this tool, we then reconsider the evidence on convergence across US states

    Medical miracle claimed for Canadian explorer

    No full text

    Sustainable Smart Polymer Composite Materials: A Comprehensive Review

    No full text
    This review provides a thorough analysis of the progress made in smart polymer composite materials, which have recently been seen as potential game-changers in areas such as construction, aerospace, biomedical engineering, and energy. This article emphasizes the distinctive characteristics of these materials, including their responsiveness to stimuli like temperature, light, and pressure, and their potential uses in different industries. This paper also examines the difficulties and restrictions associated with the creation and utilization of smart polymer composite materials. This review seeks to provide a thorough understanding of smart polymer composite materials and their potential to offer innovative solutions for a variety of applications

    Machine Learning Techniques for the Design and Optimization of Polymer Composites: A Review

    No full text
    Polymer composites are employed in a variety of applications due to their distinctive characteristics. Nevertheless, designing and optimizing these materials can be a lengthy and resourceintensive process for low cost and sustainable materials. Machine learning has the potential to simplify this process by offering predictions of the characteristics of novel composite materials based on their microstructures. This review outlines machine learning techniques and highlights the potential of machine learning to improve the design and optimization of polymer composites. This review also examines the difficulties and restrictions of utilizing machine learning in this context and offers insights into potential future research paths in this field
    corecore