4,343 research outputs found

    Aharonov-Bohm Oscillations with Spin: Evidence for Berry's Phase

    Full text link
    We report a study of the Aharonov-Bohm effect, the oscillations of the resistance of a mesoscopic ring as a function of a perpendicular magnetic field, in a GaAs two-dimensional hole system with a strong spin-orbit interaction. The Fourier spectra of the oscillations reveal extra structure near the main peak whose frequency corresponds to the magnetic flux enclosed by the ring. A comparison of the experimental data with results of simulations demonstrates that the origin of the extra structure is the geometric (Berry) phase acquired by the carrier spin as it travels around the ring.Comment: To be published in Physical Review Letter

    The tensor structure on the representation category of the Wp\mathcal{W}_p triplet algebra

    Full text link
    We study the braided monoidal structure that the fusion product induces on the abelian category Wp\mathcal{W}_p-mod, the category of representations of the triplet WW-algebra Wp\mathcal{W}_p. The Wp\mathcal{W}_p-algebras are a family of vertex operator algebras that form the simplest known examples of symmetry algebras of logarithmic conformal field theories. We formalise the methods for computing fusion products, developed by Nahm, Gaberdiel and Kausch, that are widely used in the physics literature and illustrate a systematic approach to calculating fusion products in non-semi-simple representation categories. We apply these methods to the braided monoidal structure of Wp\mathcal{W}_p-mod, previously constructed by Huang, Lepowsky and Zhang, to prove that this braided monoidal structure is rigid. The rigidity of Wp\mathcal{W}_p-mod allows us to prove explicit formulae for the fusion product on the set of all simple and all projective Wp\mathcal{W}_p-modules, which were first conjectured by Fuchs, Hwang, Semikhatov and Tipunin; and Gaberdiel and Runkel.Comment: 58 pages; edit: added references and revisions according to referee reports. Version to appear on J. Phys.

    Topological Surface States and Dirac point tuning in ternary Bi2Te2Se class of topological insulators

    Full text link
    Using angle-resolved photoemission spectroscopy, we report electronic structure for representative members of ternary topological insulators. We show that several members of this family, such as Bi2Se2Te, Bi2Te2Se, and GeBi2Te4, exhibit a singly degenerate Dirac-like surface state, while Bi2Se2S is a fully gapped insulator with no measurable surface state. One of these compounds, Bi2Se2Te, shows tunable surface state dispersion upon its electronic alloying with Sb (SbxBi2-xSe2Te series). Other members of the ternary family such as GeBi2Te4 and BiTe1.5S1.5 show an in-gap surface Dirac point, the former of which has been predicted to show nonzero weak topological invariants such as (1;111); thus belonging to a different topological class than BiTe1.5S1.5. The measured band structure presented here will be a valuable guide for interpreting transport, thermoelectric, and thermopower measurements on these compounds. The unique surface band topology observed in these compounds contributes towards identifying designer materials with desired flexibility needed for thermoelectric and spintronic device fabrication.Comment: 9 pages, 6 figures; Related results at http://online.kitp.ucsb.edu/online/topomat11/hasan

    Three-leg correlations in the two component spanning tree on the upper half-plane

    Full text link
    We present a detailed asymptotic analysis of correlation functions for the two component spanning tree on the two-dimensional lattice when one component contains three paths connecting vicinities of two fixed lattice sites at large distance ss apart. We extend the known result for correlations on the plane to the case of the upper half-plane with closed and open boundary conditions. We found asymptotics of correlations for distance rr from the boundary to one of the fixed lattice sites for the cases rs1r\gg s \gg 1 and sr1s \gg r \gg 1.Comment: 16 pages, 5 figure

    Measurement of 8-Oxo-7, 8-Dihydro-2\u27 Deoxyguanosine in Human Semen and Urine by Isotope-Dilution Liquid Chromatography-Tandem Mass Spectrometry with On-Line Solid Phase Extraction: Comparison with a Commercial Available Enzyme-Linked Immunosorbent Assay

    Get PDF
    This study aimed to assess the correlation between 8-oxo-7,8-dihydro-2’-deoxyguanosine (8-oxo-dGuo) in semen and urine, and to compare the analytical methods of the isotope-diluted liquid chromatograph-tandem mass spectrometry (LC-MS/MS) coupled with an on-line Solid-Phase Extraction (SPE) and commercial Enzyme- Linked Immunosorbent Assay (ELISA) used for detecting 8-oxo-dGuo as an oxidative DNA damage marker. Semen and urine samples were simultaneously collected from 85 apparently healthy human subjects. An optimized DNA extraction method was employed to extract DNA from sperm while minimizing oxidation of DNA. All of the biological samples were analyzed by LC-MS/MS and ELISA. All of the biological samples were detected with 8-oxodGuo. ELISA consistently detected two to three times higher 8-oxodGuo levels in urine samples than LC-MS/MS. However, there was no significant correlation between measurements of 8-oxo-dGuo levels in urine and semen. In conclusion, the LC-MS/MS coupled with an SPE was a sensitive method to detect and quantify 8-oxo-dGuo in human sperm and urine. Urinary 8-oxo-dGuo may not be a reliable marker for detecting oxidatively damaged DNA in sperm

    Logarithmic two-point correlators in the Abelian sandpile model

    Full text link
    We present the detailed calculations of the asymptotics of two-site correlation functions for height variables in the two-dimensional Abelian sandpile model. By using combinatorial methods for the enumeration of spanning trees, we extend the well-known result for the correlation σ1,11/r4\sigma_{1,1} \simeq 1/r^4 of minimal heights h1=h2=1h_1=h_2=1 to σ1,h=P1,hP1Ph\sigma_{1,h} = P_{1,h}-P_1P_h for height values h=2,3,4h=2,3,4. These results confirm the dominant logarithmic behaviour σ1,h(chlogr+dh)/r4+O(r5)\sigma_{1,h} \simeq (c_h\log r + d_h)/r^4 + {\cal O}(r^{-5}) for large rr, predicted by logarithmic conformal field theory based on field identifications obtained previously. We obtain, from our lattice calculations, the explicit values for the coefficients chc_h and dhd_h (the latter are new).Comment: 28 page

    Surface electronic structure of a topological Kondo insulator candidate SmB6: insights from high-resolution ARPES

    Full text link
    The Kondo insulator SmB6 has long been known to exhibit low temperature (T < 10K) transport anomaly and has recently attracted attention as a new topological insulator candidate. By combining low-temperature and high energy-momentum resolution of the laser-based ARPES technique, for the first time, we probe the surface electronic structure of the anomalous conductivity regime. We observe that the bulk bands exhibit a Kondo gap of 14 meV and identify in-gap low-lying states within a 4 meV window of the Fermi level on the (001)-surface of this material. The low-lying states are found to form electron-like Fermi surface pockets that enclose the X and the Gamma points of the surface Brillouin zone. These states disappear as temperature is raised above 15K in correspondence with the complete disappearance of the 2D conductivity channels in SmB6. While the topological nature of the in-gap metallic states cannot be ascertained without spin (spin-texture) measurements our bulk and surface measurements carried out in the transport-anomaly-temperature regime (T < 10K) are consistent with the first-principle predicted Fermi surface behavior of a topological Kondo insulator phase in this material.Comment: 4 Figures, 6 Page
    corecore