1,116 research outputs found

    Test Analysis Guidelines

    Get PDF
    Development of analysis guidelines for Exploration Life Support (ELS) technology tests was completed. The guidelines were developed based on analysis experiences gained from supporting Environmental Control and Life Support System (ECLSS) technology development in air revitalization systems and water recovery systems. Analyses are vital during all three phases of the ELS technology test: pre-test, during test and post test. Pre-test analyses of a test system help define hardware components, predict system and component performances, required test duration, sampling frequencies of operation parameters, etc. Analyses conducted during tests could verify the consistency of all the measurements and the performance of the test system. Post test analyses are an essential part of the test task. Results of post test analyses are an important factor in judging whether the technology development is a successful one. In addition, development of a rigorous model for a test system is an important objective of any new technology development. Test data analyses, especially post test data analyses, serve to verify the model. Test analyses have supported development of many ECLSS technologies. Some test analysis tasks in ECLSS technology development are listed in the Appendix. To have effective analysis support for ECLSS technology tests, analysis guidelines would be a useful tool. These test guidelines were developed based on experiences gained through previous analysis support of various ECLSS technology tests. A comment on analysis from an experienced NASA ECLSS manager (1) follows: "Bad analysis was one that bent the test to prove that the analysis was right to begin with. Good analysis was one that directed where the testing should go and also bridged the gap between the reality of the test facility and what was expected on orbit.

    Feasibility Analysis of Liquefying Oxygen Generated from Water Electrolysis Units on Lunar Surface

    Get PDF
    Concepts for liquefying oxygen (O2) generated from water electrolysis subsystems on the Lunar surface were explored. Concepts for O2 liquefaction units capable of generating 1.38 lb/hr (0.63 kg/hr) liquid oxygen (LOX) were developed. Heat and mass balance calculations for the liquefaction concepts were conducted. Stream properties, duties of radiators, heat exchangers and compressors for the selected concepts were calculated and compared

    Is a Space Laundry Needed for Exploration?

    Get PDF
    Future human space exploration missions will lengthen to years, and keeping crews clothed without a huge resupply burden is an important consideration for habitation systems. A space laundry system could be the solution; however, the resources it uses must be accounted for and must win out over the very reliable practice of bringing along enough spare underwear. Through NASA's Logistics Reduction and Repurposing project, trade off studies have been conducted to compare current space clothing systems, life extension of that clothing, traditional water based clothes washing and other sanitizing techniques. The best clothing system of course depends on the mission and assumptions, but in general, analysis results indicate that washing clothes on space missions will start to pay off as mission durations push past a year

    Redesigned Human Metabolic Simulator

    Get PDF
    A design has been formulated for a proposed improved version of an apparatus that simulates atmospheric effects of human respiration by introducing controlled amounts of carbon dioxide, water vapor, and heat into the air. Denoted a human metabolic simulator (HMS), the apparatus is used for testing life-support equipment when human test subjects are not available. The prior version of the HMS, to be replaced, was designed to simulate the respiratory effects of as many as four persons. It exploits the catalytic combustion of methyl acetate, for which the respiratory quotient (the molar ratio of carbon dioxide produced to oxygen consumed) is very close to the human respiratory quotient of about 0.86. The design of the improved HMS provides for simulation of the respiratory effects of as many as eight persons at various levels of activity. The design would also increase safety by eliminating the use of combustion. The improved HMS (see figure) would include a computer that would exert overall control. The computer would calculate the required amounts of oxygen removal, carbon dioxide addition, water addition, and heat addition by use of empirical equations for metabolic profiles of respiration and heat. A blower would circulate air between the HMS and a chamber containing a life-support system to be tested. With the help of feedback from a mass flowmeter, the blower speed would be adjusted to regulate the rate of flow according to the number of persons to be simulated and to a temperature-regulation requirement (the air temperature would indirectly depend on the rate of flow, among other parameters). Oxygen would be removed from the circulating air by means of a commercially available molecular sieve configured as an oxygen concentrator. Oxygen, argon, and trace amounts of nitrogen would pass through a bed in the molecular sieve while carbon dioxide, the majority of nitrogen, and other trace gases would be trapped by the bed and subsequently returned to the chamber. If, as recommended, the oxygen concentrator were of a rotating twelve-bed design, then variations in the product stream could be made very small. Carbon dioxide would be added directly to the circulating air by simple injection from a supply tank. The rate of injection would be maintained at the required rate by use of a mass flowmeter/controller. In the same way, nitrogen would be added to make up for the small amount of nitrogen lost through the oxygen concentrator. Water vapor would be added to the circulating air by heating the corresponding required flow of water to steam in a heat exchanger. More heat, required to complete the simulation of the thermal effect of respiration, would be added through another heat exchanger. Heat would be supplied to both heat exchangers via a hot-oil loop

    ALSSAT Version 6.0

    Get PDF
    Advanced Life Support Sizing Analysis Tool (ALSSAT) at the time of this reporting has been updated to version 6.0. A previous version was described in Tool for Sizing Analysis of the Advanced Life Support System (MSC- 23506), NASA Tech Briefs, Vol. 29, No. 12 (December 2005), page 43. To recapitulate: ALSSAT is a computer program for sizing and analyzing designs of environmental-control and life-support systems for spacecraft and surface habitats to be involved in exploration of Mars and the Moon. Of particular interest for analysis by ALSSAT are conceptual designs of advanced life-support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water and process human wastes to reduce the need of resource resupply. ALSSAT is a means of investigating combinations of such subsystems technologies featuring various alternative conceptual designs and thereby assisting in determining which combination is most cost-effective. ALSSAT version 6.0 has been improved over previous versions in several respects, including the following additions: an interface for reading sizing data from an ALS database, computational models of a redundant regenerative CO2 and Moisture Removal Amine Swing Beds (CAMRAS) for CO2 removal, upgrade of the Temperature & Humidity Control's Common Cabin Air Assembly to a detailed sizing model, and upgrade of the Food-management subsystem

    Children of Immigrants: Healthy Beginnings Derailed by Food Insecurity

    Get PDF
    Children of immigrants are the fastest growing child population in the United States. More than 20 percent of children under age six have immigrant parents; approximately 93 percent of these children are American citizens.Of the children who are non-citizens, two-thirds will grow up to become citizens, playing a critical role in our nation's future

    Exploration Spacecraft and Space Suit Internal Atmosphere Pressure and Composition

    Get PDF
    The design of habitat atmospheres for future space missions is heavily driven by physiological and safety requirements. Lower EVA prebreathe time and reduced risk of decompression sickness must be balanced against the increased risk of fire and higher cost and mass of materials associated with higher oxygen concentrations. Any proposed increase in space suit pressure must consider impacts on space suit mass and mobility. Future spacecraft designs will likely incorporate more composite and polymeric materials both to reduce structural mass and to optimize crew radiation protection. Narrowed atmosphere design spaces have been identified that can be used as starting points for more detailed design studies and risk assessments

    FY04 Advanced Life Support Architecture and Technology Studies: Mid-Year Presentation

    Get PDF
    Long-Term Objective: Identify optimal advanced life support system designs that meet existing and projected requirements for future human spaceflight missions. a) Include failure-tolerance, reliability, and safe-haven requirements. b) Compare designs based on multiple criteria including equivalent system mass (ESM), technology readiness level (TRL), simplicity, commonality, etc. c) Develop and evaluate new, more optimal, architecture concepts and technology applications

    Carbon Dioxide Reduction Technology Trade Study

    Get PDF
    For long-term human missions, a closed-loop atmosphere revitalization system (ARS) is essential to minimize consumables. A carbon dioxide (CO2) reduction technology is used to reclaim oxygen (O2) from metabolic CO2 and is vital to reduce the delivery mass of metabolic O2. A key step in closing the loop for ARS will include a proper CO2 reduction subsystem that is reliable and with low equivalent system mass (ESM). Sabatier and Bosch CO2 reduction are two traditional CO2 reduction subsystems (CRS). Although a Sabatier CRS has been delivered to International Space Station (ISS) and is an important step toward closing the ISS ARS loop, it recovers only 50% of the available O2 in CO2. A Bosch CRS is able to reclaim all O2 in CO2. However, due to continuous carbon deposition on the catalyst surface, the penalties of replacing spent catalysts and reactors and crew time in a Bosch CRS are significant. Recently, technologies have been developed for recovering hydrogen (H2) from Sabatier-product methane (CH4). These include methane pyrolysis using a microwave plasma, catalytic thermal pyrolysis of CH4 and thermal pyrolysis of CH4. Further, development in Sabatier reactor designs based on microchannel and microlith technology could open up opportunities in reducing system mass and enhancing system control. Improvements in Bosch CRS conversion have also been reported. In addition, co-electrolysis of steam and CO2 is a new technology that integrates oxygen generation and CO2 reduction functions in a single system. A co-electrolysis unit followed by either a Sabatier or a carbon formation reactor based on Bosch chemistry could improve the overall competitiveness of an integrated O2 generation and CO2 reduction subsystem. This study evaluates all these CO2 reduction technologies, conducts water mass balances for required external supply of water for 1-, 5- and 10-yr missions, evaluates mass, volume, power, cooling and resupply requirements of various technologies. A system analysis and comparison among the technologies was made based on ESM, technology readiness level and reliability. Those technologies with potential were recommended for development

    Tool for Sizing Analysis of the Advanced Life Support System

    Get PDF
    Advanced Life Support Sizing Analysis Tool (ALSSAT) is a computer model for sizing and analyzing designs of environmental-control and life support systems (ECLSS) for spacecraft and surface habitats involved in the exploration of Mars and Moon. It performs conceptual designs of advanced life support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water, and process wastes in order to reduce the need of resource resupply. By assuming steady-state operations, ALSSAT is a means of investigating combinations of such subsystems technologies and thereby assisting in determining the most cost-effective technology combination available. In fact, ALSSAT can perform sizing analysis of the ALS subsystems that are operated dynamically or steady in nature. Using the Microsoft Excel spreadsheet software with Visual Basic programming language, ALSSAT has been developed to perform multiple-case trade studies based on the calculated ECLSS mass, volume, power, and Equivalent System Mass, as well as parametric studies by varying the input parameters. ALSSAT s modular format is specifically designed for the ease of future maintenance and upgrades
    • …
    corecore