22 research outputs found

    The effect of high-altitude on human skeletal muscle energetics: 31P-MRS results from the caudwell xtreme everest expedition

    Get PDF
    Many disease states are associated with regional or systemic hypoxia. The study of healthy individuals exposed to high-altitude hypoxia offers a way to explore hypoxic adaptation without the confounding effects of disease and therapeutic interventions. Using 31P magnetic resonance spectroscopy and imaging, we investigated skeletal muscle energetics and morphology after exposure to hypobaric hypoxia in seven altitude-naΓ―ve subjects (trekkers) and seven experienced climbers. The trekkers ascended to 5300 m while the climbers ascended above 7950 m. Before the study, climbers had better mitochondrial function (evidenced by shorter phosphocreatine recovery halftime) than trekkers: 16Β±1 vs. 22Β±2 s (mean Β± SE, p<0.01). Climbers had higher resting [Pi] than trekkers before the expedition and resting [Pi] was raised across both groups on their return (PRE: 2.6Β±0.2 vs. POST: 3.0Β±0.2 mM, p<0.05). There was significant muscle atrophy post-CXE (PRE: 4.7Β±0.2 vs. POST: 4.5Β±0.2 cm2, p<0.05), yet exercising metabolites were unchanged. These results suggest that, in response to high altitude hypoxia, skeletal muscle function is maintained in humans, despite significant atrophy

    Mitochondrial affinity for ADP is twofold lower in creatine kinase knock-out muscles - Possible role in rescuing cellular energy homeostasis

    No full text
    Adaptations of the kinetic properties of mitochondria in striated muscle lacking cytosolic (M) and/or mitochondrial (Mi) creatine kinase (CK) isoforms in comparison to wild-type (WT) were investigated in vitro. Intact mitochondria were isolated from heart and gastrocnemius muscle of WT and single- and double CK-knock-out mice strains (cytosolic (M-CK-/-), mitochondrial (Mi-CK-/-) and double knock-out (MiM-CK-/-) respectively). Maximal ADP-stimulated oxygen consumption flux (State3 V-max; nmol O-2.mg mitochondrial protein(-1).min(-1)) and ADP affinity (K-50(ADP); muM) were determined by respirometry. State 3 V-max and K-50(ADP) of M-CK-/- and MiM-CK-/- gastrocnemius mitochondria were twofold higher than those of WT, but were unchanged for Mi-CK-/-. For mutant cardiac mitochondria, only the K-50(ADP) of mitochondria isolated from the MiM-CK-/- phenotype was different (i.e. twofold higher) than that of WT. The implications of these adaptations for striated muscle function were explored by constructing force-flow relations of skeletal muscle respiration. It was found that the identified shift in affinity towards higher ADP concentrations in MiM-CK-/- muscle genotypes may contribute to linear mitochondrial control of the reduced cytosolic ATP free energy potentials in these phenotypes

    Resting oxygen consumption and in vivo ADP are increased in myopathy due to complex I deficiency

    No full text
    Background: Patients with isolated complex I deficiency (CID) in skeletal muscle mitochondria often present with exercise intolerance as their major clinical symptom. Objective: To study the in vivo bioenergetics in patients with complex I deficiency in skeletal muscle mitochondria. Methods: In vivo bioenergetics were studied in three of these patients by measuring oxygen uptake at rest and during maximal exercise, together with forearm ADP concentrations ([ADP]) at rest. Whole-body oxygen consumption at rest (Vo(2)) was measured with respiratory calorimetry. Maximal oxygen uptake (Vo(2)max) was measured during maximal exercise on a cycle ergometer. Resting [ADP] was estimated from in vivo P-31 MRS measurements of inorganic phosphate, phosphocreatine, and ATP content of forearm muscle. Results: Resting Vo(2) was significantly increased in all three patients: 128 +/- 14% (SD) of values in healthy control subjects. Vo(2)max in patients was on average 2.8 times their Vo(2) at rest and was only 28% of Vo(2)max in control subjects. Resting [ADP] in forearm muscle was significantly increased compared with healthy control subjects (patients 26 +/- 2 muM, healthy controls 9 +/- 2 muM). Conclusion: In patients with CID, the increased whole-body oxygen consumption rate at rest reflects increased electron transport through the respiratory chain, driven by a decreased phosphorylation potential, The increased electron transport rate may compensate for the decreased efficiency of oxidative phosphorylation (phosphorylation potential)

    Dynamic MRS and MRI of skeletal muscle function and biomechanics

    No full text
    MR is a powerful technique for studying the biomechanical and functional properties of skeletal muscle in vivo in health and disease. This review focuses on 31P, 1H and 13C MR spectroscopy for assessment of the dynamics of muscle metabolism and on dynamic 1H MRI methods for non-invasive measurement of the biomechanical and functional properties of skeletal muscle. The information thus obtained ranges from the microscopic level of the metabolism of the myocyte to the macroscopic level of the contractile function of muscle complexes. The MR technology presented plays a vital role in achieving a better understanding of many basic aspects of muscle function, including the regulation of mitochondrial activity and the intricate interplay between muscle fiber organization and contractile function. In addition, these tools are increasingly being employed to establish novel diagnostic procedures as well as to monitor the effects of therapeutic and lifestyle interventions for muscle disorders that have an increasing impact in modern society

    Fiber-type-specific sensitivities and phenotypic adaptations to dietary fat overload differentially impact fast- versus slow-twitch muscle contractile function in C57BL/6J mice

    No full text
    High-fat diets (HFDs) have been shown to interfere with skeletal muscle energy metabolism and cause peripheral insulin resistance. However, understanding of HFD impact on skeletal muscle primary function, i.e., contractile performance, is limited. Male C57BL/6J mice were fed HFD containing lard (HFL) or palm oil (HFP), or low-fat diet (LFD) for 5 weeks. Fast-twitch (FT) extensor digitorum longus (EDL) and slow-twitch (ST) soleus muscles were characterized with respect to contractile function and selected biochemical features. In FT EDL muscle, a 30%–50% increase in fatty acid (FA) content and doubling of long-chain acylcarnitine (C14–C18) content in response to HFL and HFP feeding were accompanied by increase in protein levels of peroxisome proliferator-activated receptor-Ξ³ coactivator-1Ξ±, mitochondrial oxidative phosphorylation complexes and acyl-CoA dehydrogenases involved in mitochondrial FA Ξ²-oxidation. Peak force of FT EDL twitch and tetanic contractions was unaltered, but the relaxation time (RT) of twitch contractions was 30% slower compared to LFD controls. The latter was caused by accumulation of lipid intermediates rather than changes in the expression levels of proteins involved in calcium handling. In ST soleus muscle, no evidence for lipid overload was found in any HFD group. However, particularly in HFP group, the peak force of twitch and tetanic contractions was reduced, but RT was faster than LFD controls. The latter was associated with a fast-to-slow shift in troponin T isoform expression. Taken together, these data highlight fiber-type-specific sensitivities and phenotypic adaptations to dietary lipid overload that differentially impact fast- versus slow-twitch skeletal muscle contractile function
    corecore