394 research outputs found

    Soap Froths and Crystal Structures

    Full text link
    We propose a physical mechanism to explain the crystal symmetries found in macromolecular and supramolecular micellar materials. We argue that the packing entropy of the hard micellar cores is frustrated by the entropic interaction of their brush-like coronas. The latter interaction is treated as a surface effect between neighboring Voronoi cells. The observed crystal structures correspond to the Kelvin and Weaire-Phelan minimal foams. We show that these structures are stable for reasonable areal entropy densities.Comment: 4 pages, RevTeX, 2 included eps figure

    Effect of interchain coupling on conducting polymer luminescence: excimers in derivatives of poly(phenylene vinylene)

    Full text link
    Optical excitation of a chain in a polymer film may result in formation of an excimer, a superposition of on-chain excitons and charge-transfer excitons on the originally excited chain and a neighboring chain. The excimer emission is red-shifted compared to that of an on-chain exciton by an amount depending on the interchain coupling tt_\perp. Setting up the excimer wavefunction and calculating the red shift, we determine average tt_\perp values, referred to a monomer, of 0.52 eV and 0.16 eV for poly(2,5-hexyloxy pp-phenylene cyanovinylene), CN-PPV, and poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-1, 4 p-phenylene vinylene], MEH-PPV, respectively, and use them to determine the effect of interchain distance on the emission.Comment: 10 pages, RevTeX, 1 PS figure, replaced version of cond-mat/9707095, accepted for publication in Phys. Rev. B, Rapid Communicatio

    Hydration of a side-chain-free n-type semiconducting ladder polymer driven by electrochemical doping

    Full text link
    We study the organic electrochemical transistors (OECTs) performance of the ladder polymer, poly(benzimidazobenzophenanthroline) (BBL) in an attempt to better understand how an apparently hydrophobic side-chain-free polymer is able to operate as an OECT with favorable redox kinetics in an aqueous environment. We examine two BBLs of different molecular masses from different sources. Both BBLs show significant film swelling during the initial reduction step. By combining electrochemical quartz crystal microbalance (eQCM) gravimetry, in-operando atomic force microscopy (AFM), and both ex-situ and in-operando grazing incidence wide-angle x-ray scattering (GIWAXS), we provide a detailed structural picture of the electrochemical charge injection process in BBL in the absence of any hydrophilic side-chains. Compared with ex-situ measurements, in-operando GIWAXS shows both more swelling upon electrochemical doping than has previously been recognized, and less contraction upon dedoping. The data show that BBL films undergo an irreversible hydration driven by the initial electrochemical doping cycle with significant water retention and lamellar expansion that persists across subsequent oxidation/reduction cycles. This swelling creates a hydrophilic environment that facilitates the subsequent fast hydrated ion transport in the absence of the hydrophilic side-chains used in many other polymer systems. Due to its rigid ladder backbone and absence of hydrophilic side-chains, the primary BBL water uptake does not significantly degrade the crystalline order, and the original dehydrated, unswelled state can be recovered after drying. The combination of doping induced hydrophilicity and robust crystalline order leads to efficient ionic transport and good stability.Comment: 24 pages, 5 figure

    Origin of spectral broadening in pi-conjugated amorphous semiconductors

    Get PDF
    We present a study of the picosecond fluorescence dynamics of pi-conjugated semiconducting organic dendrimers in the solid state. By varying the degree of branching within the dendrons, referred to as the dendrimer generation, a control of intermolecular spacing of the emissive core and therefore of the lattice parameter for Forster-type energy transfer is achieved. This allows a distinction between spectral diffusion and excimer formation as the two main sources of spectral broadening in organic semiconductors. Whereas Forster-type dispersive spectral relaxation is independent of temperature but strongly dependent on the interchromophore distance, excimer formation is also strongly thermally activated due to temperature-dependent conformational changes and the influence of thermally activated dynamic disorder. The rapid spectral diffusion allows a determination of the excimer rise in the emission, which is shown to have a profound impact on the steady state luminescence properties of dendrimer films. We show that the dendrimer generation not only allows a microscopic control of intermolecular interactions but also a direct control of the rate of spectral diffusion. Implications for the design of novel materials for optoelectronic devices are discussed

    Blue-Emitting Butterfly-Shaped 1,3,5,9-Tetraarylpyrenes: Synthesis, Crystal Structures, and Photophysical Properties

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Organic Letters (copyright © American Chemical Society) after peer review and technical editing by the publisher. To access the final edited and published work see: http://dx.doi.org/10.1021/ol400265
    corecore